Protective Effects of Propranolol in Adults Following Severe Burn Injury: A Safety and Efficacy Trial

Avery Yuan
PI and mentor: Dr. David Schoenfeld
MGH Biostatistics Center
HSPH Post-Bac Program
July 24th, 2014
Agenda

I. The Propranolol Study

II. Data Management
Background

I. Severe Burn Injuries

• Burn Injuries Receiving Medical Treatment1: 450,000

1. Sources: National Electric Injury Surveillance System-All Injury Project (NEISS-AIP); National Emergency Department Survey (HCUP-NEDS) (2010 Data); National Ambulatory Medical Care Survey.

II. Propranolol

- A non-selective beta blocker
- To treat hypertension, anxiety, and panic

Figure left: http://www.sigmaaldrich.com/catalog/product/sigma/p0884?lang=en®ion=US
Figure right: http://marianuniversityscienceblog.wordpress.com/2010/10/15/beta-blockers-function-and-effects/
III. Beneficial Effects of Propranolol

In Children:

- Decrease infections
- Increase wound healing
- Improve cardiac work, hypermetabolism, and survival
The Role of Players

- **The sponsor**
- **American Burn Association (ABA)**
- **Data Coordinating Center (DCC)**
- **Data and Safety Monitoring Board (DSMB)**
- **The Propranolol Study**

- **Assist investigators**
- **Oversee the conduct of this trial**
The Study

Aim:
- To determine the safety and efficacy of propranolol relative to placebo in a cohort of severely burned adults

Design:
- A multi-center, phase 2a/b, investigator-initiated, randomized trial

Population:
- A group of 250 patients who are admitted to one of the participating burn centers within 72 hours of injury with a burn injury ≥ 20% total body surface area (TBSA)
Hypothesis:

- Propranolol will provide significant benefit to adults following severe burn injury at doses that are safe and do not increase risk of adverse infections and non-infectious outcomes.

Significance:

- A pilot study
- Safety and efficacy
- Subpopulations
- Dose levels
Study Summary Timeline

<table>
<thead>
<tr>
<th>Burn Injury</th>
<th>Burn Center Admission</th>
<th>Randomization</th>
<th>First dose of drug</th>
<th>Burn Center Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 72 hrs</td>
<td>< 96 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Must be admitted to burn center within 72 hrs of injury (and meet all inclusion criteria and NO exclusions) | • Screening | • Alert pharmacy
• Collect baseline specimens
• Calculate dosing target heart rate and max dose
• First dose of study drug with 96 hrs of injury | Dosing: dose every 8 hours (holding per protocol for MAP < 50 or HR < 55) | |

Treatment day a: Obtain peak and trough specimens around first dose of the day

Treatment day b: Obtain on-study specimens
Statistical Analysis Plan

Efficacy
Cardiac Rate Pressure Product (RPP aka. cardiovascular product/double product)
RPP = HR × SBP
- A piecewise linear random effects model
- Bonferroni correction

Safety
Mortality rates, infectious and non-infectious complications
- A mixed model negative binomial regression:
 - fixed treatment effects, log(follow-up time)
Two co-primary endpoints:
• A comparison of slopes over the first 2 weeks
• A comparison of means at 30 days
Overview of Statistical Issues

- Multi-center setting
- Loss to follow up

- A random center effect
- Inclusion of baseline covariates
Agenda

Data Management

1. Overview of data quality (DQ)
2. Data cleaning framework
3. Using SAS PROC SQL effectively
SCDM definition of DQ in clinical trials: “quality data is data that support conclusions and interpretations equivalent to those derived from error-free data” (Institute of Medicine, Roundtable Report, 1999)
Study Coordinating Sites
- Fill in data forms
- Determine if queries are resolvable

Studytrax Data Capture System
Built-in range and logic check

SAS Generates Spreadsheets for Errors

Was Error Previously Non-resolvable / Site?
- Yes and Keep
- Error

Spreadsheet Sent Back to Sites for Review

Further Analysis

Direct feedback

Error free

If Resolvable

If Non-resolvable

No
SQL (Structured Query Language) is the universally adopted language for querying a database

- Simple command structure for data definition, access, and manipulation
- Instead of specifying how to do, just say what you want to be done
Examples: SELECT and CREATE TABLE statements

```sql
/* Project Flow */
proc sql noprint;
create table work.flow1 as
    select ReferenceID, SiteName,
            'Participant Signed Consent but Consent Date is Missing' as problem,
            'Consent' as form, 'Consent-Inclusion-Exclusion' as Timeline
    from work.all_wide having SIGNCONS=1 and STARTDT = ;

create table work.flow2 as
    select ReferenceID, SiteName,
            'Study Termination Reason is "Other" and Missing Description' as problem,
            'Study Termination' as form
    from work.all_wide having TRMRFT =9 and TRMOIHSP='';

create table work.flow3 as
    select ReferenceID, SiteName,
            'Screening Date after Enrollment Date' as problem,
            '' as form, '' as Timeline,
            'Screening Date: ||put(ScreenDate, MMDDYY10.)||', Enrollment Date: ||put(EnrollDate, MMDDYY10.)||
    from work.baseline
    having .<EnrollDate<ScreenDate;

create table work.flow4 as
    select ReferenceID, Sitename,
            "Follow Up Visit Date is prior to Visit 1 Visit Date" as problem,
            'Visit Form' as form,
            'Visit 1 Date: ||put(VISITDT01, MMDDYY10.)||', Follow Up Date: ||put(VISITDT02, MMDDYY10.)||
    from work.all_wide having .<VISITDT02<VISITDT01;
```
References

1. Vadim Tantsyura, Olive Yuan, and Sergiy Sirichenko: Challenges and Opportunities in Clinical Trial Data Processing
2. Ranjit Singh and Dr. Kawaljeet Singh: A Descriptive Classification of Causes of Data Quality Problems in Data Warehousing
3. Clinical Trial Data Validation: Using SAS PROC SQL effectively, SFBC New Drug Services
4. Van den Broeck et al: Data Cleaning: Detecting, Diagnosing, and Editing Data Abnormalities
5. Propranolol Study Protocol, manual of operation, statistical plans and study training
6. Sources: National Electric Injury Surveillance System-All Injury Project (NEISS-AIP); National Emergency Department Survey (HCUP-NEDS) (2010 Data); National Ambulatory Medical Care Survey.
Acknowledgements

• Dr. David Schoenfeld
• Dr. Diane Finkelstein
• DCC Personnel
• Dr. Rebecca Betensky
• Tonia Smith
• Summer program peers
• The audience

HARVARD SCHOOL OF PUBLIC HEALTH
University of Washington Harborview Medical Center
University of Texas Medical Branch
Loyala University Medical Center
University of Iowa
University of Toronto
University of Texas, Southwestern
Wake Forest University
MGH
Cornell University
University of Florida