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Introduction

In untargeted metabolomics experiments, extra care must be taken to ensure that measurement artifacts are
separated from true metabolites. Given that these studies identify metabolites with unknown signals, some
signals detected may not be those of real metabolites, but rather are the result of contamination,
miscalibration, or some other unknown factor. The goal of MetProc is to provide a simple and convenient set of
metrics to help distinguish true metabolites from likely measurement artifacts by assessing patterns of missing
data across an injection order.

The following brief tutorial will outline the metrics employed in MetProc and provide some simple examples of
how to properly execute the functions. All functions assume that pooled plasma samples, either derived from
biological samples or from an industry standard, are intermittently included throughout the injection order.
Additionally, it is assumed that biological samples have been randomized in their injection order.

Data Setup

All functions assume a basic structure to the metabolomics data. Specifically, it is assumed that pooled plasma
samples (either derived from biological samples or an industry standard) are intermittently measured
throughout the randomized injection order of biological samples. These quality control samples are commonly
employed in untargeted metabolomics experiments [1]. There may be multiple header lines and multiple
leading columns in the file. Typically a csv or tab-delimited file will contain the data of interest. The file will
generally be formatted similarly to:

Date 415 415 … 415 415 415 … 415 415

Inject 1 2 … 21 22 23 … 42 43

Meta Meth HMDB m/z rt Com ProcID PPP01 1 … 20 PPP02 21 … 40 PPP03

M1 Lipid H1 304.3 8.71 1 6.7E5 6.7E5 … 5.0E5 6.7E5 4.7E5 … 6.5E5 6.7E5

M2 Lipid H2 309.5 7.64 2 1.0E5 1.1E5 … 1.1E5 1.0E5 1.2E5 … 1.1E5 1.0E5

… … … … … … … … … … … … … … … …

M100 Lipid H100 249.4 6.24 100 2.3E4 1.9E4 … 2.2E4 2.4E4 1.6E4 … 1.8E4 2.4E4

To read in a dataset structured like the table above, we can use the following code:

library(MetProc) #Load package
metdata <- read.met(system.file("extdata/sampledata.csv", package="MetProc"),
headrow=3, metidcol=1, fvalue=8, sep=",", ppkey="PPP", ippkey="BPP")

The read.met function takes a path to a csv, or other text-delimited file. In this case, we are using the
“sampledata.csv” file that accompanies the MetProc package. The remaining arguments require the row
number containing the header line (headrow=3), the column number containing the metabolite ID (metidcol=1),
the column number where metabolite readings begin (fvalue=8), the delimiter of the file (sep=","), the prefix
accompanying the biological sample-based pooled plasma samples (ppkey="PPP"), and the prefix
accompanying the industry standard-based pooled plasma samples, if necessary (ippkey="BPP"). In this case,
there are no industry standard-based pooled plasma samples in our data (there are just biological sample-
derived pooled plasma samples), so the default of ippkey="BPP" will have no effect and can just be left as
above. If there were a second type of pooled plasma, then it is important that the ippkey argument be properly
used. An additional argument, sidkey, can be provided if biological samples have a unique prefix – in this case
all biological samples are simple integers without a designating prefix and will be appended the prefix “X” by
the read.met function. If there is no designating prefix for biological samples, the read.met function will assume
any column that does not have the ppkey or ippkey prefix is a biological sample.



Once run, the metabolomics data will be stored in a matrix called metdata with rows that are metabolites and
columns that are samples:

PPP001 X1 X2 X3 X4 X5 X6

M1 670058.25 671012.0 636836.5 572688.447 624217.867 513155.751 560303.1

M2 101587.11 108378.1 112558.6 107466.114 114529.615 116085.411 115078.7

M3 NA NA NA 3555.135 4526.877 3915.841 NA

M4 4923.74 NA NA NA NA NA NA

M5 NA NA NA NA NA NA NA

It’s important to ensure that missing data are coded as NA appropriately.

Separating Metabolites

Three metrics are used to separate metabolites into likely measurement artifacts and likely true metabolites.
The function to run this analysis is met_proc. The metrics used are:

1. Pooled Plasma Missing Rate: For each metabolite, a pooled plasma missing rate is obtained.
Metabolites detected in the majority of pooled plasma samples are likely true metabolites as the pooled
plasma is designed to represent a combination of all samples. The default cutoff used for this metric in 
met_proc is 0.02. Any metabolite with a pooled plasma missing rate less than or equal to this cutoff is
automatically retained. Metabolites with extremely large pooled plasma missing rates (default > 0.95)
are automatically removed as this would suggest that the signal is not real.

2. Correlation of Missing Rates Across Blocks: For each metabolite, the injection order can be broken
into blocks consisting of biological samples and flanking pooled plasma samples. For instance, this
structure would be something like the following:

Block1 Block2 Block3

PPP01 1 … 20 PPP02 21 … 40 PPP03 41 … 60 PPP04

For each block, a pooled plasma missing rate and a biological samples missing rate can be calculated. The
pooled plasma missing rate will be either 0, .5, or 1 as there are two pooled plasma samples per block. A
correlation is taken between the biological sample missing rate and pooled plasma missing rate across blocks.
High correlations are indicative of structure in the missing data (some sections of missing data and some
sections of present data) which suggests the metabolite may be a measurement artifact. Removing
metabolites with correlations above roughly 0.6 or 0.65 seems to be a reasonable place to start.

3. Longest Run of Present Data Across Blocks: Similar to the correlation metric, the injection order is
separated into blocks. However, in this case, a block is defined as just the preceding pooled plasma and
following biological samples:

Block1 Block2 Block3

PPP01 1 … 20 PPP02 21 … 40 PPP03 41 … 60

For each block, if the missing rate of the biological samples in that block is less than a certain threshold
(default 0.5) the data is deemed present. Any block with data deemed present in the biological samples and
with data present in the pooled plasma sample is considered to be a “data present” block. The longest run of
consecutive “data present” blocks is calculated. Metabolites with particularly long runs are considered to have
structure in their missing data which is more indicative of a measurement artifact. This metric should not be
applied to metabolites with low overall missing rates as data will be simply be present creating long runs, but
the metabolite is likely a true signal if it has a low missing rate. The longest run metric is more useful for
metabolites with higher missing rates.

To avoid applying the longest run metric to certain groups of metabolites (for instance those with relatively low
missing rates), the strategy employed is to separate metabolites into groups based on pooled plasma missing
rates. For example, the default parameters separate all metabolites with pooled plasma missing rates between
0.02 and 0.95 into 5 evenly spaced groups: 0.02 - 0.206, 0.206 - 0.392, 0.392 - 0.578, 0.578 - 0.764, and
0.764 - 0.95. For each group, a different threshold for both the correlation metric and longest run metric can



be applied. This allows some flexibility in how to filter metabolites.

To separate the metabolites using the default settings and avoid generating any plots (which can be time
consuming with many metabolites and samples), the following code can be used:

library(MetProc) #Load package

metdata <- read.met(system.file("extdata/sampledata.csv", package="MetProc"),
headrow=3, metidcol=1, fvalue=8, sep=",", ppkey="PPP", ippkey="BPP")

results <- met_proc(metdata,plot=F)

The list results contains 2 elements, one containing a matrix of retained metabolites (key: keep) and one
containing a matrix of removed metabolites (key: remove).

We can see these retained metabolites (56 in total):

dim(results[['keep']])

results[['keep']]

[1] 56 505

PPP001 X1 X2 X3 X4 X5 X6

M1 670058.25 671012.0 636836.5 572688.4 624217.9 513155.8 560303.1

M2 101587.11 108378.1 112558.6 107466.1 114529.6 116085.4 115078.7

M4 4923.74 NA NA NA NA NA NA

M6 71826.71 NA NA NA NA NA NA

M7 836156.77 1262314.5 1197551.7 1107209.7 1168667.3 1175629.4 1187441.2

As well as the removed metabolites (44 in total):

dim(results[['remove']])

results[['remove']]

[1] 44 505

PPP001 X1 X2 X3 X4 X5 X6

M3 NA NA NA 3555.135 4526.877 3915.841 NA

M5 NA NA NA NA NA NA NA

M10 NA NA NA NA NA NA NA

M11 2532.908 2266.269 2902.653 2714.540 3827.934 2670.662 3721.841

M14 4087.628 4076.425 3478.356 2555.838 2679.818 3722.899 4189.143

Visualizations

There are 3 main visualizations provided by MetProc. When running the met_proc function, setting plot=TRUE will
generate a PDF saved to outfile that contains all these visualizations automatically. Alternatively, you can
generate them using the specific functions although generally setting the argument plot=TRUE in the met_proc
function is simpler. Here I will outline the syntax to use the individual plotting functions if desired.

The first plot demonstrates the correspondence of pooled plasma missing rate and biological sample missing
rate across metabolites. The code to run is simply:

plot_pp_sample_missing(metdata)

Which yields:



In general, there is good correspondece between the two missing rates. Additionally, some metabolites have
very low pooled plasma missing rates but large biological sample missing rates. These are likely true
metabolites that would be overlooked if simply applying a missing rate cutoff.

The second plot we can look at is the distribution of the longest run and correlation metrics for each group of
data. This can be done with one command using the default number of splits (5), the default minimum pooled
plasma missing rate (0.02), the default maximum pooled plasma missing rate (0.95), and the default thresholds
for deeming a metabolite as an artifact or true metabolite:

plot_metric(metdata,histcolors=c('red','blue','yellow','green','purple'))

This allows one to visualize the number of metabolites over thresholds in each of the groups. It may also be
useful to help set the threshold criteria to use in the analysis. In this case, we see that the longest run metric



isn’t removing many metabolites at the threshold of 15 in groups 2, 3, and 4. Conversely, the correlation metric
removes substantially more at the given cutoffs (the colored metabolites).

The final plots are a way to visualize the patterns of missingness for data. We may want to see if the
metabolites removed have structure in their missing data whereas the metabolites retained seem to not have
structure in their missing data.

We can see the removed metabolites with the following:

heatmap_res(results[['remove']],'PPP','X',missratecut=0.001,'Removed Metabolites')

This plots the results[['remove']] metabolites, with pooled plasma key ppkey="PPP", biological sample key "X", a
minimum missing rate to plot of missratecut=0.001, and a title of Removed Metabolites.

And likewise for the retained metabolites:

heatmap_res(results[['keep']],'PPP','X',missratecut=0.001,'Retained Metabolites')



By specificying missratecut=0.001 we avoid plotting missing data patterns for metabolites that have no missing
data. This helps to save time in plotting as clustering these metabolites can be computationally expensive.

In general, we see that the metabolites retained either have the vast majority of data present, or what appears
to be a fairly random scattering of missing data. Given the randomization of biological sample injections, this
suggests that these metabolites are likely real. Conversely, the removed metabolites seem to have clear block
structures with data present at some parts of the injection order and data absent in other parts. With a
randomized injection order, this is indicative of some measurement artifact. Additionally, metabolites with
overall high missing rates are removed.

In general, as previously noted, the most effective way to generate these plots is to specify plot=TRUE when
running the met_proc function.

Examples Without Default Settings

The previous example used the default thresholds and criteria for analysis. We can also change these settings
and see the results. The thresholds for the correlation metric and longest run metric can be altered to varying
effect. Default criteria for the default 5 splits are:

1. Correlation metric: c(.6, .65, .65, .65, .6)
2. Longest run metric: c(NA, 15, 15, 15, NA)

When a metric is NA, it will not be considered for that group. If we change the longest run metric cutoffs to c(15, 
15, 15, 15, 15) as well as the lower limit of pooled plasma missing rate to consider for removal from 0.02 to -
0.0001 we see a stark change. (Note: By setting mincut to a value slightly less than 0, we essentially remove
the lower bound. Setting it to 0 would still automatically retain metabolites with a 0% missing rate for pooled
plasma, which generally you would want to do, but just for illustrative purposes let’s see what happens when
we apply the longest run metric to those metabolites with entirely present data).



r <- met_proc(metdata, numsplit=5, cor_rates=c(.6, .65, .65, .65, .6), runlengths=c(15, 15, 15, 15, 15), mincut=-0.0001, 
maxcut=0.95, scut=0.5, ppkey='PPP', sidkey='X', plot=F )

This comes with some warnings (we are trying to take correlations when there is a 0% missing rate in many
blocks so no standard deviation can be calculated for the correlation metric), but we see that we lose many
metabolites (75 metabolites removed) because the longest run metric finds long runs for the metabolites with
all data present. This example illustrates that one must be careful when considering the longest run metric for
metabolites with data mostly present.

We can also tweak the threshold to consider data as present in biological samples when computing the longest
run metric, the number of splits, and the correlation metric cutoffs. The code below illustrates an example of
doing that as well as tweaking a few other parameters:

r <- met_proc(metdata, numsplit=7, cor_rates=c(.4, .5, .5, .5, .5, .55, .75), runlengths=c(NA, 5, 5, 5, 5, 5, NA), mincut=0.02, 
maxcut=0.95, scut=0.4, ppkey='PPP', sidkey='X', plot=F )

In this case, we split the metabolites with pooled plasma missing rates between 0.02 and 0.95 into 7 sections
evenly distributed across pooled plasma missing rates. The respective cutoffs for the correlation metric and
the longest run metric in each of these sections are given by the cor_rates and runlengths arguments. For the
longest run metric, we consider biological samples present in a block if the missing rate is less than 0.4 rather
than the default of 0.5. This removes 50 metabolite and retains 50 metabolites.

If we had multiple types of pooled plasma samples, we can specify the particular type to use with the ppkey
argument. For instance, if we had industry standard pooled plasma samples with the prefix "BPP", we could
simply substitute "BPP" for "PPP" in the above code so that the met_proc function considers the alternative
pooled plasma columns in the calculations.

Summary

In general, running the MetProc analysis procedure can be a very quick and simple process. In the case where
default settings are sufficient, the only commands necessary are:

metdata <- read.met(system.file("extdata/sampledata.csv", package="MetProc"))
results <- met_proc(metdata)
write.met(results,'retained_samples.csv',system.file("extdata/sampledata.csv", package="MetProc"),
type='keep')
write.met(results,'removed_samples.csv',system.file("extdata/sampledata.csv", package="MetProc"),
type='remove')

These 4 lines of code read in the data, process the data into metabolites to keep and metabolites to remove
using the met_proc process, and stores 2 csv files, one for the removed metabolites and one for the retained
metabolites.
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