Assessing the distribution of impacts in global benefit-cost analysis

Lisa A. Robinson & James K. Hammitt
with supplement by Matthew D. Adler
Outline

• BCA
 — Separates analysis of efficiency & equity
 — Rationale

• Descriptive analysis of distributional effects
 — Over what domain (population characteristics)?
 — Of what outcome?

• Social welfare functions
 — Integrate efficiency & equity
 — Can approximate evaluation of policy with weighted BCA
Benefit-cost analysis

• Social net benefit = sum over population of net benefits to individuals
• Individual net benefit = monetary value to individual of all the consequences of the policy
 — If population sum > 0, individuals with positive net benefits could (in principle) compensate individuals with negative net benefits, so that everyone would have positive net benefits
 o Kaldor-Hicks compensation test
• Conventional BCA may not permit distributional analysis
 — Benefits and costs often estimated
 o Independently, as population totals
 o Cannot correlate individual benefits with costs
 — Transfer payments often not included
 o Not necessary to calculate population net benefits
 o Can be important for distribution
Rationale for separating efficiency & equity

• Efficiency: increase the size of the “social welfare pie”
 — In principle, everyone can have a bigger piece
• If distribution of resources or well-being is non-optimal, it can (presumably) be improved at lower cost by directed transfers than by reducing efficiency of other policies
 — Tax & transfer policies
Distributional analysis: over what domain?

- Need to identify population characteristics of concern
 - Income, wealth, poverty
 - Race, ethnicity, primary language
 - Gender
 - Age
 - Social class, occupation, education
 - Others

- Could have multidimensional domain
 - Race x income x region
Distributional analysis: of what?

- Distribution of net benefits is more relevant than separate distributions of benefits & of costs
 - Unequal or regressive distribution of costs may be fine if distribution of benefits is parallel
- Often easier to estimate distribution of benefits than of costs
 - Benefits: beneficiaries may be targeted or correlated with population characteristics
 - Specified health condition, location
 - If monetary value of benefit differs by subgroup, need to use appropriate valuation
 - Costs: if costs take the form of increased costs to firms, these are ultimately passed on to: firm owners, workers (lower wages or lower employment), customers (higher prices)
 - Incidence of costs may be difficult to trace
Describing distributional effects: curves & inequality metrics

- Multiple graphs and indices can be used to summarize distribution of net benefits (or other outcome)
- Table
- Lorenz curve & Gini index
 - Distribution of single attribute, often income
- Concentration curve & concentration index
 - Distribution of attribute against living standards (or other population characteristic)
Table 3.1. Distribution of Net Benefits (stylized example; numbers provided solely for illustration)

<table>
<thead>
<tr>
<th>Income Range</th>
<th>Deaths Averted</th>
<th>Benefits (value of deaths averted)</th>
<th>Costs</th>
<th>Net benefits (benefits minus costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 – $500</td>
<td>10</td>
<td>$600,000</td>
<td>$100,000</td>
<td>$500,000</td>
</tr>
<tr>
<td>$500-$1,000</td>
<td>5</td>
<td>$310,000</td>
<td>$50,000</td>
<td>$260,000</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
<td>etc.</td>
<td>etc.</td>
<td>etc.</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lorenz curve & Gini index

- Gini index = \(\frac{A}{A + B} \)
 = \(\frac{1}{2} - B \)
 (if axes are scaled 0 to 1)
 - Perfect equality = 0
 - Maximum inequality = 1
Concentration curve

Concentration index

\[\text{Concentration index} = \frac{1}{2} - \text{area under curve} \]

(if axes are scaled 0 to 1)

- Perfect equality = 0
- Maximum concentration on rich = 1
- Maximum concentration on poor = -1
Social welfare functions

- Requires an interpersonally comparable measure of wellbeing (and changes in wellbeing): w_i
- Social welfare is a function of the wellbeing of each person in the population
- Utilitarian: $W^U = \sum_{i=1}^{n} w_i$
 - If wellbeing is a concave function of income (diminishing marginal utility of income) then utilitarian SWF gives priority to poor over rich
- Prioritarian: $W^P = \sum_{i=1}^{n} g(w_i)$
 - $g(\cdot)$ is an increasing, concave function (steeper for small w than for large w)
 - Gives priority to people at low wellbeing
- Evaluation by SWF can be approximated by weighted BCA
 - Weight net benefits more for poor over rich, low wellbeing over high
Prioritarian transformation function

\[g(w_H) + \Delta w \]

\[g(w_H) \]

\[g(w_L + \Delta w) \]

\[g(w_L) \]

Well-being, \(w \)

\(w_L \)

\(w_L + \Delta w \)

\(w_H \)

\(w_H + \Delta w \)