Antenatal Corticosteroids Trial (ACT): trial summary

Fernando Althabe
José M Belizán
Institute for Clinical Effectiveness and Health Policy, Buenos Aires, Argentina

Pierre M Buekens
Tulane School of Public Health and Tropical Medicine, New Orleans, USA

GMNHC, Mexico City
October 21st, 2015
• No conflict of interest
Why is an intervention proven to be effective, safe, easy to administer, and inexpensive in most high and a few middle income countries, still underused in low and middle income countries?
Use of ACS at six GN sites
(3-6 month baseline period in 2011)

<table>
<thead>
<tr>
<th>Location</th>
<th>Women with babies <5th percentile BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>16/46 (35%)</td>
</tr>
<tr>
<td>Guatemala</td>
<td>11/278 (4%)</td>
</tr>
<tr>
<td>Belgaum, India</td>
<td>29/445 (7%)</td>
</tr>
<tr>
<td>Nagpur, India</td>
<td>6/297 (2%)</td>
</tr>
<tr>
<td>Pakistan</td>
<td>6/487 (1%)</td>
</tr>
<tr>
<td>Zambia</td>
<td>0/271 (0%)</td>
</tr>
<tr>
<td>Kenya</td>
<td>1/109 (1%)</td>
</tr>
</tbody>
</table>
ACT Trial (2011-2014)

- 6 countries
- 102 clusters
- 99,742 mothers enrolled
- 100,705 babies
- 18-month intervention

Identify women at high risk of preterm birth*

Gestational age assessment**

Use Preterm Kit

Includes:
- Signs of preterm labor
- pPROM
- Hemorrhage
- Hypertension

**Ultrasound GA dating generally unavailable
Trial Questions

• Was it feasible under routine conditions to scale up ACS at all levels of care in LMIC?

• Were ACS effective to reduce neonatal mortality in low resource settings in the absence of newborn intensive care?

• Were ACS safe for the mother and/or newborns if scaled up at all levels of care?
Use of ACS

Among women with babies <5th percentile BW
Among all women

- 10% in Ctrl
- 2% in Int

- 45% in Ctrl
- 12% in Int
Maternal and Perinatal Outcomes

Among births <5th percentile

- Neonatal deaths 28d
- Stillbirths
- Suspected Maternal Infection*

*Odds ratio
Maternal and Perinatal Outcomes

Among births <5th percentile

- Neonatal deaths 28d
- Stillbirths
- Suspected Maternal Infection *

Among all births

- Neonatal deaths 28d
- Stillbirths
- Suspected Maternal Infection *

*Odds ratio
Effect on Neonatal Mortality by BW Percentiles
Interpretation

Absence of positive effect on NM (<5th percentile)

- Partial coverage of ACS (45%)
- 50% late preterms
- Absence of neonatal intensive care
- Newborns suffering other co-morbidities (infection)?
Interpretation

Harmful effects on the overall population

- Overtreatment with ACS (only 16% of treated delivered a small/preterm baby)

- Hypothesis: increased susceptibility to infection?

- Hypothesis: worse quality of care in the intervention group?
Identify which components of the complex intervention might have caused the increased mortality by:

• Analyzing the use of steroids in the deaths to see if could have caused excess mortality;
• Exploring the process of care to see if the intervention effect on mortality was mediated by co-interventions related to antenatal care or delivery care.
Post-hoc secondary Analysis

Gain a better understanding of the mechanism of action through which ACS might have increased mortality:

• The factors related to ACS administration associated with perinatal deaths e.g. timing of steroid use, number of doses and time to delivery.

• Whether regional or site differences in health system, population baseline risk, intervention implementation were associated with the observed effects.
Post-hoc secondary Analysis

To analyze the effect of the intervention on:

- neonatal infectious morbidity and mortality
- stillbirth rates, including assessment of macerated, intrapartum stillbirth
Thank You!
To identify which components of the complex intervention might have caused the increased mortality

ACS use among all women
ACS use among neonatal deaths

ACS use among all women: 12% for Int, 2% for Ctrl
ACS use among neonatal deaths: 30% for Int, 6% for Ctrl
To identify which components of the complex intervention might have caused the increased mortality

• Did the ACT intervention affect the quality of care in the intervention compared to the control group?

No evidences were found to support such hypothesis
Did the intervention increase the risk of neonatal severe infection in the intervention compared to the control group?

Infection as a cause of neonatal death:

<table>
<thead>
<tr>
<th>Characteristic, n (%)</th>
<th>Livebirths < 5th percentile birthweight</th>
<th>All livebirths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervention</td>
<td>Control</td>
</tr>
<tr>
<td>Neonatal deaths <28 days, N</td>
<td>566</td>
<td>524</td>
</tr>
<tr>
<td>Birth asphyxia</td>
<td>42 (7.4)</td>
<td>45 (8.6)</td>
</tr>
<tr>
<td>Low birthweight/preamaturity</td>
<td>380 (67.1)</td>
<td>362 (69.1)</td>
</tr>
<tr>
<td>Neonatal sepsis/infection</td>
<td>28 (4.9)</td>
<td>15 (2.9)</td>
</tr>
<tr>
<td>Major malformation</td>
<td>15 (2.7)</td>
<td>14 (2.7)</td>
</tr>
<tr>
<td>Other</td>
<td>73 (12.9)</td>
<td>64 (12.2)</td>
</tr>
<tr>
<td>Cause not identified</td>
<td>28 (5.0)</td>
<td>24 (4.6)</td>
</tr>
</tbody>
</table>

Supplementary table 4: Cause of 28-day neonatal deaths among all births
Did the intervention increase the risk of neonatal severe infection in the intervention compared to the control group?

• We adapted WHO YICSS algorithm to define possible severe bacterial infection (pSBI).

• We compared pSBI rates, and the pSBI plus death rates in intervention vs. control groups, controlling for pre-trial imbalances.
Methods: pSBI Definition

<table>
<thead>
<tr>
<th>WHO YICSS symptom</th>
<th>GN MNHR symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature \geq 37.5° C</td>
<td>High fever ($> 38°$ C)</td>
</tr>
<tr>
<td>Temperature $< 35.5°$ C</td>
<td>Hypothermia ($< 35°$ C)</td>
</tr>
<tr>
<td>History of difficulty feeding</td>
<td>Feeding problems; Stopped suckling/feeding</td>
</tr>
<tr>
<td>History of convulsions</td>
<td>Convulsions</td>
</tr>
<tr>
<td>Respiratory rate of 60 breaths per minute or more</td>
<td>Breathing problems; Difficulty breathing</td>
</tr>
<tr>
<td>Severe chest indrawing</td>
<td>Breathing problems; Difficulty breathing</td>
</tr>
<tr>
<td>Movement only when stimulated</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bleeding/pus-like discharge from umbilicus</td>
</tr>
<tr>
<td></td>
<td>Infection COD; Text indicating infection, sepsis, possible sepsis, septic conditions, meningitis, pneumonia</td>
</tr>
</tbody>
</table>
pSBI

- **Pre-trial**
 - 12.4% 14.2% 0.95 (0.75-1.21)

- **Trial**
 - 14.8% 13.9% 1.01 (0.89-1.14)
 - Adjusted by pre-trial 1.05 (0.92-1.20)

- <25th BW %ile* 1.03 (0.92-1.15)
- >25th BW %ile* 1.15 (0.98-1.35)

*Adjusted by pre-trial
pSBI \textit{plus} death

- Pre-trial: 2.3\% \quad 2.4\% \quad 0.96 (0.87-1.07)
- Trial: 2.4\% \quad 2.0\% \quad 1.16 (1.04-1.29)
 - Adjusted by pre-trial: 1.17 (1.04-1.30)

- <25th BW \%ile*: 1.03 (0.90-1.17)
- >25th BW \%ile*: 1.36 (1.12-1.65)

*Adjusted by pre-trial
Summary

• Compared to other components of the multifaceted intervention, ACS may have been more likely involved in the observed increased neonatal mortality,

• ACS may be associated with the observed increased risks of potential severe infections and death reported in this paper.

• These interpretations should be considered cautiously and no practical implications can be derived from them.

• However, they support that further trials are urgently needed to clarify the effectiveness and safety of ACS on neonatal health in low resource settings.

• Neonatal infection should be included as a main outcome in such trials.