I have no conflicts to disclose
Identifying disease-critical cell types and cellular processes by integrating single-cell profiles and human genetics

Alkes Price
Harvard T.H. Chan School of Public Health
ASHG 2021 meeting
October 20, 2021

Jagadeesh*, Dey* et al biorxiv
(https://doi.org/10.1101/2021.03.19.436212)
Cells are the basic functional unit in biology.

They are classified by structure, location, function, molecules.

Identifying disease-critical cell types is crucial to understanding disease biology.

Reviewed in Hekselman et al. 2020 Nat Rev Genet
Prior work linking cell types to disease using RNA-seq

Finucane et al. 2018 Nat Genet
Bulk RNA-seq tissues and broad cell types + GWAS data

Smillie et al. 2019 Cell
UC scRNA-seq + individual GWAS genes

also see Bryois et al. 2020 Nat Genet (brain)
Integrating scRNA-seq with disease genetics

Primary metric: enrichment score corrected for all genes (E_{score}) and its p-value

sc-linker: Jagadeesh*, Dey* et al biorxiv (https://doi.org/10.1101/2021.03.19.436212)
Outline: constructing gene programs from scRNA-seq

1. **Cell type**
 - UMAP 2
 - UMAP 1
 - Enterocyte
 - C1orf106
 - SMAD3
 - GPR35

2. **Cellular processes within/across cell types**
 - Across cell type
 - Within cell type

3. **Disease progression**
 - Healthy lung
 - Inflamed lung
 - Goblet
 - Club
 - Ciliated
Outline

1. Constructing cell type gene programs
2. Constructing cellular process gene programs
3. Constructing disease progression programs
1. Constructing cell type gene programs

Cell type programs

Genes characterizing the most well understood functional unit – a cell type

Genes specifically expressed in an annotated cell type compared to other cell types in the same tissue
Linking blood cell types to blood cell traits

Confirmation of expected findings.
Validation of Roadmap U ABC S2G linking strategy

Roadmap U ABC performs best
Linking blood cell types to immune diseases
Linking brain cell types to brain diseases/traits

- BMI
- Major depressive disorder
- Number of children
- Neuroticism
- Smoking status
- Years of education
- Schizophrenia
- Intelligence
- Insomnia
- Morning person
- Age at first birth

GABAergic (1.2%)
Glutamatergic (2.9%)
Non-neuronal (1.0%)
Importance of tissue-specific S2G linking strategy

Blood cell types x blood traits x blood S2G
Brain cell types x brain traits x brain S2G

BMI
Major depressive disorder
Number of children
Neuroticism
Smoking status
Years of education
Schizophrenia
Intelligence
Insomnia
Morning person
Age at first birth

E-score
-\log(p-value)

GABAergic (1.2%)
Glutamatergic (2.9%)
Non-neuronal (1.0%)
Comparing sc-linker vs. MAGMA gene set score

MAGMA: de Leeuw et al. 2015 PLoS Comput Biol

average $\text{log}_{10} P$-values of 11.3 for sc-linker vs. 4.4 for MAGMA for cell type-disease/trait pairs in the most biologically plausible categories
Outline

1. Constructing cell type gene programs
2. Constructing cellular process gene programs
3. Constructing disease progression programs
2. Constructing cellular process gene programs

Genes characterizing cellular processes within or across cell types using unsupervised NMF-based approach (not using marker genes)
Linking brain cellular processes to disease
Outline

1. Constructing cell type gene programs
2. Constructing cellular process gene programs
3. Constructing disease progression programs
3. Constructing disease progression programs

Disease progression programs

Genes specifically expressed in disease samples compared to healthy samples *in the same cell type*
Enterocytes and M cells disease progression are critical for ulcerative colitis.
Microglia disease progression program is critical for Alzheimer’s disease
Constructing cellular process programs from case-control sc-RNA-seq data

Modified NMF approach

D = disease-specific cellular processes

H+D = shared cellular processes (healthy + disease)
Identifying disease-critical genes in top gene programs e.g. disease-critical (gene, cell type) pairs

- Prioritize genes based on grade > 0.8 in gene program
 + MAGMA gene-level score (de Leeuw et al. 2015 PLoS Comput Biol)

Enrichment of atrial fibrillation in atrial cardiomyocytes:
- Ion channel genes including KD2L2

Enrichment of systolic blood pressure in pericytes:
- Adrenergic pathway genes including PLCE1
- Nitric oxide pathway genes including GUCY1A3
Summary: A refined vocabulary of disease

Learning gene programs: cell types and beyond

Identify cell type of action

Pinpoint disease specific gene programs

Prioritize genes in specific cellular context
Acknowledgements

Karthik Jagadeesh

Kushal Dey

Aviv Regev

Also:
Steven Gazal (HSPH/USC)
Daniel Montoro (Broad Institute)
Ramnik Xavier (Broad Institute)
Joseph Nasser (Broad Institute)
Jesse Engreitz (Broad/Stanford)

Jagadeesh*, Dey* et al biorxiv (https://doi.org/10.1101/2021.03.19.436212)