Efficient Bayesian mixed model analysis increases association power in large cohorts

10/20/14: ASHG 2014

Po-Ru Loh
Harvard School of Public Health

<table>
<thead>
<tr>
<th></th>
<th>Linear regression</th>
<th>Existing mixed model methods</th>
<th>New method: BOLT-LMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$O(MN)$</td>
<td>$O(MN^2)$</td>
<td>$\approx O(MN^{1.5})$</td>
</tr>
<tr>
<td>Corrects for confounding?</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mixed model association is hot

• **Linear mixed models (LMMs)** for GWAS have attracted intense research interest in the past few years

• High-profile computational speedups:
 – EMMAX (*Kang* et al. 2010 *Nat Gen*)
 – P3D/TASSEL (*Zhang* et al. 2010 *Nat Gen*)
 – FaST-LMM (*Lippert* et al. 2011 *Nat Meth*)
 – GEMMA (*Zhou* & *Stephens* 2012 *Nat Gen*)
 – GRAMMAR-Gamma (*Svishcheva* et al. 2012 *Nat Gen*)

• Extensions to standard LMM:
 – Multiple loci (*Segura* et al. 2012 *Nat Gen*)
 – Multiple traits (*Korte* et al. 2012 *Nat Gen*)
 – Sparse modeling (*Listgarten* et al. 2013 *Nat Gen*)
 – GCTA-LOCO (*Yang* et al. 2014 *Nat Gen*)

• See also: ASHG 2014 talk 169, Fusi & poster 1458S, Heckerman
Mixed model association corrects for confounding and increases power

<table>
<thead>
<tr>
<th></th>
<th>Linear regression</th>
<th>Existing mixed model methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$O(MN)$</td>
<td>$O(MN^2)$</td>
</tr>
<tr>
<td>Corrects for confounding?</td>
<td>\times</td>
<td>\checkmark</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$M = \#$ SNPs
$N = \#$ samples
New mixed model method (BOLT-LMM) increases speed, further increases power

<table>
<thead>
<tr>
<th></th>
<th>Linear regression</th>
<th>Existing mixed model methods</th>
<th>New method: BOLT-LMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$\mathcal{O}(MN)$</td>
<td>$\mathcal{O}(MN^2)$</td>
<td>$\approx \mathcal{O}(MN^{1.5})$</td>
</tr>
<tr>
<td>Corrects for confounding?</td>
<td>❌</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Power</td>
<td>⚡</td>
<td>⚡</td>
<td>⚡</td>
</tr>
</tbody>
</table>

Models non-infinitesimal genetic architectures
BOLT-LMM’s iterative algorithm increases speed; non-infinitesimal model increases power

Speed: New retrospective statistic allows rapid computation via iterative methods

\[
\frac{(x_m^T V^{-1} y)^2}{(V^{-1} y)^T \Theta^* (V^{-1} y)}
\]

Power: Flexible Bayesian prior on SNP effect sizes models genetic architectures with large-effect loci

“infinitesimal model”

“non-infinitesimal model”

Non-normal: Heavier tails
BOLT-LMM requires far less time and memory than existing methods

BOLT-LMM requires far less time and memory than existing methods.
BOLT-LMM can handle big data

<table>
<thead>
<tr>
<th>Number of samples (N)</th>
<th>BOLT-LMM: Time, memory</th>
<th>Existing methods: Time, memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,000</td>
<td>5 hours 4.6 GB</td>
<td>~2 weeks >60 GB</td>
</tr>
<tr>
<td>480,000</td>
<td>3 days 35 GB</td>
<td>~4 years >3.5 TB</td>
</tr>
</tbody>
</table>

Benchmark data sets:
- Simulated genotypes generated from WTCCC2 samples
 \(M = 300K \) SNPs
- Simulated phenotypes with \(h^2_g = 0.2 \) SNP heritability
BOLT-LMM increases power in simulations (while controlling false positives)

Increased χ^2 stats at causal SNPs

Increased effective sample size

Data:
- Real genotypes from N=15,633 WTCCC2 samples
- Simulated phenotypes with varying numbers of causal SNPs + environmental stratification
BOLT-LMM increases association power in WGHS phenotypes

Data:
Women’s Genome Health Study
N=23,294
European-ancestry samples
How does BOLT-LMM increase power?

Under the hood, Part 1
Mixed models increase power by conditioning on polygenic effects

• Joint modeling reveals association!

• Example:

Is phenotype y associated with x_1?

Hard to tell...
Mixed models increase power by conditioning on polygenic effects

• **Joint modeling reveals association!**

• **Example:**

Is phenotype y associated with x_1?

How about if we also have x_2?
Mixed models increase power by conditioning on polygenic effects

• Joint modeling reveals association!
• Example:

Is phenotype y associated with x_1?

Knowledge of x_2 reveals assoc of x_1 through joint model

Note: In mixed model, x_1 (test SNP) is modeled as fixed effect; x_2 is modeled as random effect
Better joint model of phenotype \Rightarrow better conditioning \Rightarrow more power

Infinitesimal model
- Standard mixed model: all SNPs causal with normally distributed effect sizes:
 \[
 \beta \sim N\left(0, \frac{h^2}{M}\right)
 \]

Non-infinitesimal model
- Reality: Only a small fraction of SNPs causal with larger effects
- BOLT-LMM: SNP effect sizes modeled with mixture of two Gaussians

ASHG 2014 poster 1767S, Vilhjalmsson
How does BOLT-LMM increase speed?
(And what exactly does it compute?)

Under the hood, Part 2
Idea 1: New retrospective statistic + algorithm increases speed (for infinitesimal LMM)

\[
\frac{(x_m^TV^{-1}y)^2}{(V^{-1}y)^T\Theta^*(V^{-1}y)}
\]

Retrospective mixed model assoc statistic

- Compute quasi-likelihood score test similar to MASTOR:
 - Jakobsdottir & McPeek 2013 AJHG
- Calibrate using approach similar to GRAMMAR-Gamma
 - Svisheeva et al. 2012 NG

Fast iterative algorithm

- Replace expensive eigendecomposition with linear system solving
- No need to compute genetic relationship matrix (GRM) => save time, RAM
Idea 2: Bayesian extension of linear mixed model (non-inf. model) increases power

\[
\frac{(x_m^T V^{-1} y)^2}{(V^{-1} y)^T \Theta^* (V^{-1} y)} \quad \rightarrow \quad \frac{(x_m^T y_{\text{resid}})^2}{y_{\text{resid}}^T \Theta^* y_{\text{resid}}}
\]

Retrospective mixed model assoc statistic

Retrospective mixed model assoc statistic using Bayesian prior

- Compute fast variational approximation of posteriors
- Calibrate using LD score regression
 - Bulik-Sullivan et al. bioRxiv (under revision, Nat Genet)
 - ASHG 2014 talk 351, Finucane & poster 1787T, Bulik-Sullivan
New mixed model method (BOLT-LMM) increases speed, further increases power

<table>
<thead>
<tr>
<th></th>
<th>Linear regression</th>
<th>Existing mixed model methods</th>
<th>New method: BOLT-LMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$O(MN)$</td>
<td>$O(MN^2)$</td>
<td>$\approx O(MN^{1.5})$</td>
</tr>
<tr>
<td>Corrects for confounding?</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Power</td>
<td>⚡</td>
<td>⚡</td>
<td>⚡</td>
</tr>
</tbody>
</table>

Models non-infinitesimal genetic architectures
Limitations and future directions

• Limitations
 – Loss of power from case-control ascertainment
 • *ASHG 2014 poster 1746S, Hayeck*
 – Potential breakdown of approximations in family studies, rare variant tests, non-human data sets

• Future directions
 – Fast heritability estimation
 – Multiple variance components
 – Multiple phenotypes
Acknowledgments

- Alkes Price
- Nick Patterson
- Bjarni Vilhjalmsson
- Hilary Finucane
- Sasha Gusev

- George Tucker
- Bonnie Berger

- Brendan Bulik-Sullivan
- Benjamin Neale
- Rany Salem

Google “BOLT-LMM”

Loh et al. bioRxiv (under revision, Nat Genet)