Fast and accurate 1000 Genomes imputation using summary statistics or low-coverage sequencing data

Bogdan Pasaniuc
GWAS study designs

Sequencing: >30x

Illumina 1M

Sequencing: 4x, <1x?

r² (True, Inferred genotypes) ~ 1

r² (True, Inferred genotypes) ~ 0.9

r² ~ 0.7 (0.24x)

High coverage & lots of samples ➔ too expensive
Imputation from reference panels improves power in GWAS

Howie et al. 2009 PLoS Genet; also see Marchini et al. 2007 Nat Genet
Genotype imputation: “two-thousand and late”?

1. Key ingredient for increasing power in GWAS
 [Marchini&Howie, Nat Rev Genet 2010,...]

2. Enables powerful meta-analyses

3. Accurate genotype calls from sequencing data
 [1000 Genomes Project, Pasaniuc et al NatGen 2012,...]
Array-based imputation: existing methods are accurate but slow

Number of CPU days needed to impute 11.6 million SNPs using a 1000G reference panel of 292 European samples:

<table>
<thead>
<tr>
<th>Method</th>
<th>N=10,000 samples</th>
<th>N=50,000 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impute1(^1)</td>
<td>9,000 days</td>
<td>45,000 days</td>
</tr>
<tr>
<td>BEAGLE(^2)</td>
<td>2,500 days</td>
<td>12,500 days</td>
</tr>
<tr>
<td>Impute2(^3)</td>
<td>1,000 days</td>
<td>5,000 days</td>
</tr>
<tr>
<td>Impute2 with pre-phasing(^4)</td>
<td>200 days</td>
<td>1,100 days</td>
</tr>
</tbody>
</table>

\(^1\)Marchini et al. 2007 Nat Genet
\(^2\)Browning et al. 2009 Am J Hum Genet
\(^3\)Howie et al. 2009 PLoS Genet
\(^4\)Howie et al. 2012 Nat Genet
Imputation: limitations

• Imputation requires a lot of runtime

• Existing methods cannot be applied to summary statistics directly
 – Individual level genotype data is required
 – Challenge to obtain individual level data in meta-analysis

• Can we test for association untyped markers without access to individual level data?
Array-based imputation: why not use a Gaussian approach?

- Data at nearby SNPs is correlated (linkage disequilibrium)
 - Best performing methods use HMMs to model haplotype structure in the population

- Model correlations among SNPs with a Gaussian multi-variate
 - We assume $X \sim N(\mu,\Sigma)$
 - μ,Σ known from 1000G reference panel
 - LD blocks \Rightarrow windows of fixed length (e.g. 0.5Mb).
 - X – individual genotypes (standard imputation)
 - X – association statistics (summary level imputation)

Gaussian imputation

- **Step 1.** Infer mean μ and covariance Σ for summary data from reference panel
 - Allele frequencies:
 - $\Sigma(p_i, p_j) = 1/(2N-1) (p_{ij} - p_i p_j)$
 - $\mu = \text{(population allele frequencies)}$
 - Association z-scores:
 - $\Sigma(z_i, z_j) = r_{ij} \text{ (correlation coefficient)}$
 - $\mu = 0 \text{ (NULL)}$

- **Multivariate Central Limit**
 - $X \text{ summary statistics over sample of haplotypes}$
 - $X \sim N(\mu, \Sigma)$
Gaussian imputation

- Allele frequencies follow $N(\mu, \Sigma)$
 - (μ, Σ) inferred from reference panel

- **Step 2.** Infer conditional distribution of unobserved given typed

- P_{typed} - Observed frequencies at subset of SNPs

- $X = \text{Frequencies at rest of SNPs}$

- **Conditional Distribution** $X_{i|t}$ is also Gaussian
 - $X_{\text{imputed}|\text{typed}} \sim N(\mu_{i|t}, \Sigma_{i|t})$
Conditional distribution is analytically derived

- Conditional distribution is also Normal
 \[\chi_{\text{imputed|typed}} \sim N(\mu_{i|t}, \Sigma_{i|t}) \]

\[\mu_{i|t} = \mu_i + \Sigma_{i,t} \Sigma^{-1}_{t,t} (p_t - \mu_t) \]

[Lynch&Walsh, Genetics and Analysis of Quantitative Traits, 1998]
Conditional distribution is analytically derived

- Conditional distribution is also Normal
 \[X_{\text{imputed|typed}} \sim N(\mu_{i|t}, \Sigma_{i|t}) \]

\[
\mu_{i|t} = \mu_i + \Sigma_{i,t} \Sigma_{t,t}^{-1} (p_t - \mu_t)
\]

Population Frequency

Correlation among typed & imputed SNPs

Deviation from the population frequency at typed SNPs

Correlation among typed SNPs

[Lynch&Walsh, Genetics and Analysis of Quantitative Traits, 1998]
Conditional distribution is analytically derived

- Conditional distribution is also Normal
 \[X_{\text{imputed}|\text{typed}} \sim N(\mu_{i|t}, \Sigma_{i|t}) \]

\[\mu_{i|t} = \mu_i + \Sigma_{i,t} \Sigma^{-1}_{t,t} (p_t - \mu_t) \]

- Linear transformation w/ weights pre-computed based on reference panel
- (Prediction world) \(\Rightarrow\) Best Linear Unbiased Predictor (BLUP) [Henderson 1975 Biometrics]
- For \(N=2\) \(\Rightarrow\) imputation of individual level data
- Similar approaches but with different var/cov: Best Linear IMPutation (BLIMP) [Wen&Stephens 2010]
Conditional distribution is analytically derived

• **Step 3.**
 – Derive $\mu_{i|t}$ and use as imputation

• **Step 4.**
 – Compute association statistics over imputed frequencies *(Imp-G-summary)*

 \[\mu_{i|t} = \mu_i + \Sigma_{i,t} \Sigma^{-1} \Sigma_{t,t} (p_t - \mu_t) \]

 – Impute individual level data (n=2) *(Imp-G)*

 – Use conditional variance as measure for accuracy
Simulations

- 1000 Genomes data
- 292 Europeans used as reference
- The rest used to simulate case-control data sets
 - HAPGEN [Spencer et al PlosGen 2009]
- Randomly selected 0.5Mb loci from Chr 1
- Illumina 1M SNPs for array imputation
- Armitage Trend Test for case-control association (Armitage 1955 Biometrics)

- Beagle Imputation
 - Imputes genotypes
 - Requires individual level data

- ImpG
 - Imputes genotypes
 - Requires individual level data

- ImpG-summary
 - Imputes frequencies
 - z-scores over imputed freqs
 - Does not need individual level data
No inflation under null (odds ratio = 1)
Accurate 1000G imputation using Gaussian approach (ImpG)

Average ratio of χ^2 statistics for imputed vs. true genotypes in simulations of 1K cases + 1K controls (odds ratio = 1.5):

<table>
<thead>
<tr>
<th></th>
<th>All SNPs (MAF>1%)</th>
<th>Common SNPs (MAF>5%)</th>
<th>Low-freq SNPs (1%<MAF<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAGLE</td>
<td>0.87</td>
<td>0.89</td>
<td>0.65</td>
</tr>
<tr>
<td>ImpG</td>
<td>0.85</td>
<td>0.87</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Accurate 1000G imputation using Gaussian approach (ImpG)

Average ratio of χ^2 statistics for imputed vs. true genotypes in simulations of 1K cases + 1K controls (odds ratio = 1.5):

<table>
<thead>
<tr>
<th></th>
<th>All SNPs (MAF>1%)</th>
<th>Common SNPs (MAF>5%)</th>
<th>Low-freq SNPs (1%<MAF<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAGLE</td>
<td>0.87</td>
<td>0.89</td>
<td>0.65</td>
</tr>
<tr>
<td>ImpG</td>
<td>0.85</td>
<td>0.87</td>
<td>0.59</td>
</tr>
</tbody>
</table>

- Or, run ImpG genome-wide, then run BEAGLE only on regions of significant or suggestive association.
Accurate 1000G imputation using summary statistics (ImpG-summary)

Average ratio of χ^2 statistics for imputed vs. true genotypes in simulations of 1K cases + 1K controls (odds ratio = 1.5):

<table>
<thead>
<tr>
<th>Method</th>
<th>All SNPs (MAF>1%)</th>
<th>Common SNPs (MAF>5%)</th>
<th>Low-freq SNPs (1%<MAF<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAGLE</td>
<td>0.87</td>
<td>0.89</td>
<td>0.65</td>
</tr>
<tr>
<td>ImpG</td>
<td>0.85</td>
<td>0.87</td>
<td>0.59</td>
</tr>
<tr>
<td>ImpG-summary</td>
<td>0.82</td>
<td>0.84</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Accurate 1000G imputation using summary statistics (ImpG-summary)

Average ratio of χ^2 statistics for imputed vs. true genotypes in simulations of 1K cases + 1K controls (odds ratio = 1.5):

<table>
<thead>
<tr>
<th></th>
<th>All SNPs (MAF>1%)</th>
<th>Common SNPs (MAF>5%)</th>
<th>Low-freq SNPs (1%<MAF<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAGLE</td>
<td>0.87</td>
<td>0.89</td>
<td>0.65</td>
</tr>
<tr>
<td>ImpG</td>
<td>0.85</td>
<td>0.87</td>
<td>0.59</td>
</tr>
<tr>
<td>ImpG-summary</td>
<td>0.82</td>
<td>0.84</td>
<td>0.52</td>
</tr>
</tbody>
</table>

• Consortia can impute meta-analysis summary statistics into new reference panels without having to repeat imputation separately in each individual cohort.
Accurate 1000G imputation when imputing GBR from rest of EUR

• Used all Great Britain data from 1000G for simulations and the rest as reference panel
• Average ratio of χ^2 statistics for imputed vs. true genotypes in simulations of 1K cases + 1K controls (odds ratio = 1.5):

<table>
<thead>
<tr>
<th></th>
<th>All SNPs (MAF>1%)</th>
<th>Common SNPs (MAF>5%)</th>
<th>Low-freq SNPs (1%<MAF<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAGLE</td>
<td>0.867</td>
<td>0.888</td>
<td>0.630</td>
</tr>
<tr>
<td>ImpG</td>
<td>0.842</td>
<td>0.867</td>
<td>0.570</td>
</tr>
<tr>
<td>ImpG-summary</td>
<td>0.816</td>
<td>0.843</td>
<td>0.516</td>
</tr>
</tbody>
</table>
Gaussian imputation is extremely fast

Number of CPU days needed to impute 11.6 million SNPs using a 1000G reference panel of 292 European samples:

<table>
<thead>
<tr>
<th>Method</th>
<th>N=10,000 samples</th>
<th>N=50,000 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impute1</td>
<td>9,000 days</td>
<td>45,000 days</td>
</tr>
<tr>
<td>BEAGLE</td>
<td>2,500 days</td>
<td>12,500 days</td>
</tr>
<tr>
<td>Impute2</td>
<td>1,000 days</td>
<td>5,000 days</td>
</tr>
<tr>
<td>Impute2 with pre-phasing</td>
<td>200 days</td>
<td>1,100 days</td>
</tr>
<tr>
<td>ImpG</td>
<td>4 days</td>
<td>20 days</td>
</tr>
<tr>
<td>ImpG-summary</td>
<td>0.4 days</td>
<td>0.4 days</td>
</tr>
</tbody>
</table>

Note: ImpG/ImpG-summary running time ~ (#reference samples)
BEAGLE and Impute2 running time ~ (#reference samples)^2
Sequencing-based imputation is different from array-based imputation

Li et al. 2011 Genome Res
Low-coverage sequencing + imputation increases power vs. genotyping arrays

Effective sample size of a GWAS with a $300,000 budget:

<table>
<thead>
<tr>
<th></th>
<th>Cost per sample</th>
<th>Actual #samples</th>
<th>Average imputation r^2</th>
<th>Effective #samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illumina 1M array</td>
<td>$400</td>
<td>750</td>
<td>1.00</td>
<td>750</td>
</tr>
<tr>
<td>0.4x sequencing</td>
<td>$83*</td>
<td>3,600</td>
<td>0.81**</td>
<td>2,900</td>
</tr>
<tr>
<td>0.1x sequencing</td>
<td>$43*</td>
<td>7,000</td>
<td>0.64**</td>
<td>4,500</td>
</tr>
</tbody>
</table>

*Based on sample preparation cost of $30/sample, which is conservatively double the $15/sample reported by Rohland & Reich 2012 Genome Res, and on $133 per 1x sequencing (Illumina Network cost).

**Imputation r^2 attained at Illumina 1M SNPs by downsampling reads from real off-target exome sequencing data. Relative performance of low-coverage sequencing will be even higher at non-Illumina 1M SNPs.

Pasaniuc et al. 2012 Nat Genet
How much more powerful is low-coverage sequencing than genome-wide arrays?

Pasaniuc et al. 2012 Nat Genet
Sequencing-based imputation: existing methods are accurate but slow

Number of CPU days needed to impute 11.6 million SNPs from 1x low-coverage sequencing data using a 1000G reference panel of 292 European samples:

<table>
<thead>
<tr>
<th>Method</th>
<th>N=10,000 samples</th>
<th>N=50,000 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAGLE</td>
<td>2,500 days</td>
<td>12,500 days</td>
</tr>
<tr>
<td>Impute2</td>
<td>3,700 days</td>
<td>18,500 days</td>
</tr>
<tr>
<td>Impute2 with pre-phasing</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
</tbody>
</table>
Sequencing-based imputation: Gaussian approach

Let \(g \) denote genotypes.
Let \(\Sigma \) denote covariance between SNPs.
We assume \(g \sim N(\mu, \Sigma) \) with \(\mu, \Sigma \) known from 1000G reference panel, restricting to windows of fixed length.

Max-Likelihood framework: find \(g \) that maximizes likelihood

\[
P\left(\text{Read data} \mid \text{genotype } g \right) \times P\left(\text{genotype} \mid \mu, \Sigma \right)
\]

Error model: product of binomials (error rate \(\varepsilon \))

\[
P(R_i \mid g_i^j = 0; N_i^j) = \binom{N_i^j}{R_i} \times \varepsilon^{R_i} \times (1 - \varepsilon)^{N_i^j - R_i}
\]
\[
P(R_i \mid g_i^j = 1; N_i^j) = \binom{N_i^j}{R_i} \times \frac{1}{2}^{N_i^j}
\]
\[
P(R_i \mid g_i^j = 2; N_i^j) = \binom{N_i^j}{R_i} \times \varepsilon^{N_i^j - R_i} \times (1 - \varepsilon)^{R_i}
\]

\[
\exp(-[g-\mu]^T\Sigma^{-1}[g-\mu]/2)
\]
Sequencing-based imputation: extremely-fast algorithm

- Use Σ to augment read counts using linked SNPs, then infer posterior $P(g_i)$ at each SNP i independently.
- Borrow reads from nearby SNPs in LD
 - New counts are linear combination of reads from nearby SNPs

Standard approach:
Reads at g_i: (R_i, A_i)

Proposed approach (ImpG-seq):
Reads at g_i: (R_i, A_i)

- If $R_i + A_i$ small
 - $R_i', = \Sigma \rho R_j$
 - $A_i', = \Sigma \rho A_j$

$P(g_i \mid R_i, A_i, f_i)$

$P(g_i \mid R_i', A_i', f_i)$
Accuracy of sequence-based imputation using Gaussian approach (ImpG-seq)

Average imputation r^2 for 0.5x low-coverage sequencing data using a 1000G reference panel of 292 European samples:

<table>
<thead>
<tr>
<th></th>
<th>All SNPs (MAF>1%)</th>
<th>Common SNPs (MAF>5%)</th>
<th>Low-freq SNPs (1%<MAF<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-SNP*</td>
<td>0.18</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>BEAGLE</td>
<td>0.78</td>
<td>0.86</td>
<td>0.57</td>
</tr>
<tr>
<td>ImpG-seq</td>
<td>0.57</td>
<td>0.65</td>
<td>0.37</td>
</tr>
</tbody>
</table>

*Simple genotype calling strategy that analyzes each SNP independently using allele frequencies μ (but not covariance Σ) from reference panel
Accuracy of sequence-based imputation using Gaussian approach (ImpG-seq)

Average imputation r^2 for 4x low-coverage sequencing data using a 1000G reference panel of 292 European samples:

<table>
<thead>
<tr>
<th></th>
<th>All SNPs (MAF>1%)</th>
<th>Common SNPs (MAF>5%)</th>
<th>Low-freq SNPs (1%<MAF<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-SNP*</td>
<td>0.65</td>
<td>0.68</td>
<td>0.58</td>
</tr>
<tr>
<td>BEAGLE</td>
<td>0.93</td>
<td>0.96</td>
<td>0.85</td>
</tr>
<tr>
<td>ImpG-seq</td>
<td>0.77</td>
<td>0.80</td>
<td>0.69</td>
</tr>
</tbody>
</table>

*Simple genotype calling strategy that analyzes each SNP independently using allele frequencies μ (but not covariance Σ) from reference panel
Sequencing-based imputation using Gaussian approach is extremely fast

Number of CPU days needed to impute 11.6 million SNPs from 1x low-coverage sequencing data using a 1000G reference panel of 292 European samples:

<table>
<thead>
<tr>
<th>Method</th>
<th>N=10,000 samples</th>
<th>N=50,000 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAGLE</td>
<td>2,500 days</td>
<td>12,500 days</td>
</tr>
<tr>
<td>Impute2</td>
<td>3,700 days</td>
<td>18,500 days</td>
</tr>
<tr>
<td>Impute2 with pre-phasing</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>ImpG-seq</td>
<td>4 days</td>
<td>20 days</td>
</tr>
</tbody>
</table>

Note: ImpG-seq running time $\sim (#\text{reference samples})$
BEAGLE and Impute2 running time $\sim (#\text{reference samples})^2$
Conclusions

• Gaussian models ➞ fast linear predictors

• Linear models recover most of the association signal for 1000 Genomes imputation!

• Array-based imputation: Gaussian imputation is very fast and accurate, and can be applied to summary statistics.

• Sequencing-based imputation: Low-coverage sequencing is far superior to genotyping using genome-wide arrays. Gaussian imputation is very fast and moderately accurate.
Acknowledgements

Harvard School of Public Health:
Alkes Price
Sasha Gusev
Gaurav Bhatia

UCSF
Noah Zaitlen

Harvard Medical School/Broad
Nick Patterson
David Reich

Postdoctoral positions available at UCLA!