Overview

• The effect of nutrition interventions on child development.

• The effect of stimulation interventions on child development.

• Evidence-based design and implementation for nutrition and stimulation interventions in the first 2000 days of life.
How Nutritional Status Might Affect Development

Prado & Dewey, Nutrition Reviews, 2014
Prenatal Nutrition Interventions and Cognitive Development

Impact: Cohen’s d 0.042 (95% CI -0.0084, 0.092)
Postnatal Nutrition Interventions and Cognitive Development

Impact:

Overall: Cohen’s d 0.076 (95% CI 0.019, 0.13)

Macronutrients: Cohen’s d 0.14 (95% CI 0.067, 0.27)

MMN: Cohen’s d 0.082 (95% CI -0.012, 0.18)

Single Nutrients: Cohen’s d 0.058 (95% CI -0.0015, 0.12)
Advancing the Evidence on Nutrition Interventions and the Promotion of Early Child Development

• Improving Outcomes:
 • Longer intervention duration
 • Improved targeting of context specific nutrition risks
 • Improved study of behaviour change techniques that support strengthening of parenting (feeding) skills and nutritional practices.

• Knowledge Gaps:
 • Interventions to reduce risks of over nutrition and early child development outcomes.
 • Role of nutrition interventions in supporting early motor and social-emotional development
Overview

• The effect of nutrition interventions on child development.

• The effect of stimulation interventions on child development.

• Evidence-based design and implementation for nutrition and stimulation interventions in the first 2000 days of life.
How Stimulation Might Affect Mental Development

Provision of stimulation
- Play materials
- Child-directed talk

Child Engagement
- Active exploration and problem solving
- Communication
- Brain development

Mental Development
- Cognitive
- Sensory-motor
- Language

Lack of Stimulation

- 10-41% of households in LAMIC provided stimulation materials.
- 11-33% of parents involved in play with children.

Data Source: UNICEF MICS

Photo Credit: Professor S Walker
Stimulation Interventions and Cognitive Development

Impact: Cohen’s d 0.42 (95% CI 0.36, 0.48)

<table>
<thead>
<tr>
<th>Study</th>
<th>% Weight</th>
<th>Effect Size and 95% CI</th>
<th>Country</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eickmann et al. 2003</td>
<td>2.9</td>
<td>[0.36, 0.42]</td>
<td>Brazil</td>
<td>Groups</td>
</tr>
<tr>
<td>Gardner et al. 2003</td>
<td>3</td>
<td>[0.36, 0.42]</td>
<td>Jamaica</td>
<td>Home</td>
</tr>
<tr>
<td>Powell et al. 2004</td>
<td>2.7</td>
<td>[0.36, 0.42]</td>
<td>Jamaica</td>
<td>Home</td>
</tr>
<tr>
<td>Walker et al. 2004</td>
<td>2.9</td>
<td>[0.36, 0.42]</td>
<td>Jamaica</td>
<td>Home</td>
</tr>
<tr>
<td>Pearson et al. 2008</td>
<td>2.3</td>
<td>[0.36, 0.42]</td>
<td>Paraguay</td>
<td>Groups</td>
</tr>
<tr>
<td>Nahar et al. 2009</td>
<td>1.5</td>
<td>[0.36, 0.42]</td>
<td>Bangladesh</td>
<td>Groups</td>
</tr>
<tr>
<td>Nair et al. 2009</td>
<td>16.6</td>
<td>[0.36, 0.42]</td>
<td>India</td>
<td>Clinic</td>
</tr>
<tr>
<td>Lozoff et al. 2010 IDA</td>
<td>1.7</td>
<td>[0.36, 0.42]</td>
<td>Chile</td>
<td>Home</td>
</tr>
<tr>
<td>Lozoff et al. 2010 ND</td>
<td>2.1</td>
<td>[0.36, 0.42]</td>
<td>Chile</td>
<td>Home</td>
</tr>
<tr>
<td>Potterton et al. 2010</td>
<td>2.1</td>
<td>[0.36, 0.42]</td>
<td>South Africa</td>
<td>Clinic</td>
</tr>
<tr>
<td>Nahar et al. 2012</td>
<td>2.7</td>
<td>[0.36, 0.42]</td>
<td>Bangladesh</td>
<td>Groups</td>
</tr>
<tr>
<td>Aboud et al. 2013</td>
<td>9.6</td>
<td>[0.36, 0.42]</td>
<td>Bangladesh</td>
<td>Groups</td>
</tr>
<tr>
<td>Boivin et al. 2013</td>
<td>2.7</td>
<td>[0.36, 0.42]</td>
<td>Uganda</td>
<td>Home</td>
</tr>
<tr>
<td>Carlo et al. 2013 R</td>
<td>2.7</td>
<td>[0.36, 0.42]</td>
<td>India,Pak,Zam</td>
<td>Home</td>
</tr>
<tr>
<td>Carlo et al. 2013 NR</td>
<td>3.8</td>
<td>[0.36, 0.42]</td>
<td>India,Pak,Zam</td>
<td>Home</td>
</tr>
<tr>
<td>Toefi et al. 2013 IDA</td>
<td>4.9</td>
<td>[0.36, 0.42]</td>
<td>Bangladesh</td>
<td>Home</td>
</tr>
<tr>
<td>Toefi et al. 2013 ND</td>
<td>4.4</td>
<td>[0.36, 0.42]</td>
<td>Bangladesh</td>
<td>Home</td>
</tr>
<tr>
<td>Vazir et al. 2013</td>
<td>7.4</td>
<td>[0.36, 0.42]</td>
<td>India</td>
<td>Home</td>
</tr>
<tr>
<td>Yousafzai et al. in press</td>
<td>15.3</td>
<td>[0.36, 0.42]</td>
<td>Pakistan</td>
<td>Groups</td>
</tr>
<tr>
<td>Overall Effect Size</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aboud & Yousafzai, Annual Review of Psychology, 2015
Stimulation Interventions and Language Development

Impact: Cohen’s d 0.47 (95% CI 0.37, 0.56)

Aboud & Yousafzai, Annual Review of Psychology, 2015
Stimulation Intervention Features Associated with Successful Outcomes

- Implementation of a structured curriculum
- Coaching and feedback to strengthen responsive and positive parenting interactions.
- Application of several behaviour change techniques
- Clear defined theory of change
- Inclusion of problem solving during the contact time with parents.
Advancing the Evidence on Stimulation Interventions and the Promotion of Early Child Development

- Improving Outcomes:
 - Improved analysis of process pathways (family care processes)
 - Analysis of delivery processes (group/individual, intensity)

- Knowledge Gaps:
 - Diverse settings- majority of studies on early stimulation in the last 10 years are from South Asia.
 - Role of stimulation interventions in supporting early social-emotional development under studied.
Overview

- The effect of nutrition interventions on child development.
- The effect of stimulation interventions on child development.
- Evidence-based design and implementation for nutrition and stimulation interventions in the first 2000 days of life.
The Jamaica Study

Grantham-McGregor et al., Lancet, 1991
What Do We Know About Integrated Nutrition and Stimulation Interventions?

- Nutrition interventions promote early child growth and feeding practices.
- Stimulation (responsive care) interventions support feeding practices.
- Nutrition interventions have small impacts on child cognitive development, while stimulation interventions have moderate impacts on cognitive development.
- Some evidence to show additive benefits (primarily work from Jamaica), but few studies designed to test the independent and additive benefits of interventions.
- No evidence of harm as a result of combining interventions.
- Limited evidence on integration of stimulation with nutrition on children with SAM
- Limited evidence on longitudinal impacts of either intervention on developmental trajectories.
Potential Benefits of Integrated Nutrition and Stimulation Interventions

- Mitigate common risks (e.g., sub-optimal care practices)
- Impact multiple child outcomes (growth, health, development)
- Programme efficiencies if using a common delivery platform.
- Common window of opportunity in the life course to begin interventions:
 - Nutrition- preconception through 1000 days
 - Stimulation- continue through to first 2000 days
Integrated Design and Implementation

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing</td>
<td>• Organize messages guided by neuro, nutrition & developmental sciences (1000 days +)</td>
</tr>
<tr>
<td>Intensity</td>
<td>• Boosters for less intense/shorter programmes</td>
</tr>
<tr>
<td>Content</td>
<td>• Structured curriculum</td>
</tr>
<tr>
<td></td>
<td>• Concrete messages (#8-10)</td>
</tr>
<tr>
<td></td>
<td>• Adequate food + education</td>
</tr>
<tr>
<td>Training & Supervision</td>
<td>• Competency based training</td>
</tr>
<tr>
<td></td>
<td>• Supportive supervision and feedback loops</td>
</tr>
</tbody>
</table>
Integrated Delivery Approaches

Home
- Min fortnightly
- 20-60 minutes
- Tailored to individual child and family
- Good compliance

Groups
- Weekly-monthly (short intense or less intense & longer duration
- 1-2hrs for 8-25 caregivers
- Social support, positive attitudinal change, peer learning

Clinics
- Value – visible in health service
- Shorter term outcomes (Knowledge-practice)
Strengthening Family Capacity to Improve Child Nutrition and Development Outcomes

- Conditional cash transfers have significant indirect benefits to participation in prenatal services, growth monitoring, uptake of micronutrients (Britto et al., Lancet, 2016).

- Need to explore:

 1. Conditions linked to specific parenting and stimulation strengthening opportunities in the first 3 years of life.

 2. Multi-sector coordination opportunities to link poverty alleviation and early parenting programmes.
Maternal Depression

Prevalence

• 15.6% antenatal in LAMIC (10% in high income countries)

• 19.8% post partum in LAMIC (13% in high income countries)

Fisher et al., Bulletin WHO, 2012

Consequences

• Low weight-for age.

• Increased episodes of diarrheal illness.

• Lower ‘responsive’ stimulation and child rearing.

Walker et al., Lancet, 2011
Conclusions

• Nutrition intervention alone is inadequate to promote optimal child development.

• Integration of stimulation, with attention to parenting skills and capacities, with nutrition intervention has potential benefits.

• Research:
 • Focus on implementation features and processes that moderate multiple child outcomes (growth health, cognition, behaviour).
 • Focus on life course to determine best mix and intensity of messages over the first 2000 days.