Biologic Basis and Epidemiologic Relationship of Anthropometry with Child Development

Christopher Sudfeld, ScD
Assistant Professor of Global Health and Nutrition
E-mail: csudfeld@mail.harvard.edu
Brain Development

Myelination and Synaptogenesis begin during 3rd trimester

Proliferation and migration of neurons

Formation of neural tube

Reasoning, personality, problem solving, etc.
• Stunting is an **Indicator** of chronic malnutrition resulting from nutritional deficiency and/or infection

• Causes of stunting are multifactorial and differ in timing and magnitude of risk (maternal iron deficiency in pregnancy, SGA, child zinc deficiency, child diarrhea, etc)

• HAZ is not a uniform indicator but stunting gives indication of exposure to multiple risk factors over time
• Stunting is an *indicator* of exposure to factors that can simultaneously induce effects on brain growth and development and physical growth

• Biological effects on brain development for HAZ risk factors differ by mechanism and timing

• Non-structural effects—malnourished children are lethargic and do not explore
Cell migration and dyslexia

Folate deficiency and neural tube defects

Lead and cognitive function
Maternal iron deficiency in pregnancy

Maternal malaria

Low birth weight and SGA

Diarrhea and zinc deficiency

Suboptimal Breastfeeding
• HAZ or stunting is as an indicator of early life exposure to risk factors which may have direct or indirect impact on brain development

• *Limitation of using stunting:* *Causes and timing of risk factors for stunting vary and the magnitude of their relationship and its specific cognitive, motor, socioemotional effects are likely to differ*
Epidemiologic Relationship of HAZ with Child Development
THE PHYSICAL BASIS OF PRECOCITY AND DULLNESS.

W. Townsend Porter.

(From the Laboratory of Physiology in the St. Louis Medical College.)

In December, 1891, I received the permission of the St. Louis Board of Public Schools to collect physical measurements of the school children.

The investigation began on January 4, 1892, and was finished the fourth week in March, having extended over eleven of the fourteen weeks of winter. The weight, height, length and breadth of head, vital capacity of chest, acuteness of vision, nationality of parents, and many other facts were secured from thirty-three thousand five hundred boys and girls. The larger part of the measurements were made by the teachers, whose hearty co-operation and efficient service in this work should earn them the gratitude of every friend of science.
Linear Growth and Child Development in Low- and Middle-Income Countries: A Meta-Analysis

Christopher R. Sudfeld, ScDa, Dana Charles McCoy, PhDb, Goodarz Danaei, MD, ScDb,c, Günther Fink, PhDa, Majid Ezzati, PhDd, Kathryn G. Andrews, MPHa, Wafaie W. Fawzi, MBBS, DrPHa,c,e
Produce estimates of the cross-sectional and prospective *observational* relationship of HAZ/stunting with cognitive, motor, and socioemotional development for children <12 years of age in LMICs

Identified 68 studies from 29 LMICs
- 52 cognitive scores
- 22 motor scores
- 13 socioemotional scores
- *Over 50 tests with Bayley most frequent at 15 studies*
Standardized Mean Difference

Due to differences in *points* or *scores* between the development tests we need to use a uniform effect measure

\[
SMD = \frac{\text{Mean Group 1} - \text{Mean Group 2}}{\text{Standard Deviation of Population}}
\]
Statistical Adjustment

• Want to adjust for upstream factors (confounders) which will produce independent estimate
 - Wealth, maternal/paternal education, district, etc

• Do not adjust for factors we are trying to capture within indicator

Maternal Anemia Maternal BMI <18.5 in pregnancy Diarrhea Suboptimal Breastfeeding

Stunting
Cross-sectional Association of HAZ with Cognitive Development

Association varied significantly with child age

[effect modification by age]

≤2 years of age: Each unit increase in HAZ associated with +0.24 SD (95% CI: 0.14-0.33) increase in cognition

>2 years of age: Each unit increase in HAZ associated with +0.09 SD (95% CI: 0.05-0.13) increase in cognition
Prospective association of HAZ with Development 2 years of age and cognition at 5-11 years of age

Each unit increase in HAZ at 2 years of age was associated with **+0.22 SD** (95% CI: 0.17-0.27) increase in cognition at 5-11 years.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>SMD</th>
<th>SE</th>
<th>Weight</th>
<th>SMD</th>
<th>SMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkman* (Peru) 2002</td>
<td>0.168</td>
<td>0.092</td>
<td>8.0%</td>
<td>0.17 (−0.01, 0.35)</td>
<td>0.22 (0.17, 0.27)</td>
</tr>
<tr>
<td>Cheung (Philippines) 2009a</td>
<td>0.24</td>
<td>0.036</td>
<td>52.5%</td>
<td>0.24 (0.17, 0.31)</td>
<td>0.24</td>
</tr>
<tr>
<td>Hamadani (Bangladesh) 2013</td>
<td>0.27</td>
<td>0.082</td>
<td>10.1%</td>
<td>0.27 (0.11, 0.43)</td>
<td>0.27</td>
</tr>
<tr>
<td>Niehaus* (Brazil) 2002</td>
<td>0.186</td>
<td>0.081</td>
<td>10.4%</td>
<td>0.19 (0.03, 0.34)</td>
<td>0.19</td>
</tr>
<tr>
<td>Pollitt* (Guatemala) 1993</td>
<td>0.17</td>
<td>0.06</td>
<td>18.9%</td>
<td>0.17 (0.05, 0.29)</td>
<td>0.17</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>100.0%</td>
<td></td>
<td>0.22 (0.17, 0.27)</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 1.87$, df = 4 ($P = 0.76$); $I^2 = 0$

Test for overall effect: $z = 8.37$ ($P < 0.000001$)
Motor and Socioemotional Development

• Cross-sectional each unit increase in HAZ associated with +0.38 increase in motor score

• Prospective each unit increase in HAZ associated with +0.29 increase in motor score

• Socioemotional not able to be estimated due to differences in measures of behavior problems, attachment, social competence and temperament
What does this mean at population level?

Tanzania

Mean HAZ -1.75
What does this mean at population level?

Mean HAZ -1.75

Each unit increase HAZ associated +0.22 SD cognitive z-scores so we would expect 0.385 SD shift in ‘cognition’ ------Equal 5.8 IQ point shift

The effect size of individual interventions (maternal iron) will likely be less than that of stunting

Effect size of SMD of +0.10 would need 3,142 trial participants to have 80% power
Is the effect of increasing HAZ equal across its distribution?
Malnutrition and Its Determinants Are Associated with Suboptimal Cognitive, Communication, and Motor Development in Tanzanian Children1–3

Christopher R Sudfeld,4,* Dana Charles McCoy,8 Günther Fink,4 Alfa Muhili,9 David C Bellinger,7,10 Honorati Masanja,9 Emily R Smith,4 Goodarz Danaei,4,5 Majid Ezzati,11 and Wafaie W Fawzi4–6

Departments of 4Global Health and Population, 5Epidemiology, 6Nutrition, and 7Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; 8Center on the Developing Child, Schools of Education and Public Health, Harvard University, Cambridge, MA; 9Ifakara Health Institute, Dar es Salaam, Tanzania; 10Department of Neurology, Boston Children’s Hospital, Boston, MA; and 11Medical Research Council-Public Health England (MRC-PHE) Centre for Environment and Health, Departments of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
• Enrolled 1,036 children 18-36 months of age who were previously enrolled in neonatal vitamin A study in rural Ifakara, Tanzania
• Child cognitive, communication, and motor development assessed with an adapted Bayley Scales of Infant Development –III

• Height and Weight measured at home or clinic visits
Adapting BSID-III to Tanzania
Anthropometry Distribution at 18-36 months of Age

Child anthropometry 18–36 mo of age

HAZ
 Stunted (HAZ <−2) −1.64 ± 1.10
 375 (36.2)

WHZ
 Wasted (WHZ <−2) 0.27 ± 1.08
 15 (1.5)

WAZ
 Underweight (WAZ <−2) −0.67 ± 0.98
 92 (9.0)
Shape of the HAZ and Child Development Relationship

Adjusted for: infant sex, infant age, maternal education, wealth quintile, stimulation tertile

Sudfeld et al. J Nutr 2015
Shape of the WHZ and Child Development Relationship

Adjusted for: infant sex, infant age, maternal education, wealth quintile, stimulation tertile

Sudfeld et al. J Nutr 2015
Conclusions and Way Forward

• Observational evidence suggests robust relationship of HAZ/stunting with child cognitive, communication, and motor development. More studies needed?

• We need to start to dissect stunting to determine effect of individual risk factors on cognition (i.e. what is effect of zinc supplementation on child cognition?)

• Packages of stunting interventions and integration with stimulation interventions need to be evaluated
Acknowledgements

- Saving Brains and Neovita Team

- Ifakara Health Institute
 - Dr. Honorati Masanja
 - Dr. Alfa Muhiihi
 - Geoffrey Ashrey
 - Nurses, Trackers, Motorbike drivers, Accountants, Procurement, Village Informants...
 - Caregivers and their children