Adipocyte Lipid Chaperone aP2 Is a Secreted Adipokine Regulating Hepatic Glucose Production

Haiming Cao,1,2 Motohiro Sekiya,1 Meric Ertunc,1 M. Furkan Burak,1 Jared R. Mayers,1 Ariel White,1 Karen Inouye,1 Lisa M. Rickey,1 Baris C. Ercai,1 Masato Furuhashi,1,3 Gürol Tuncman,1 and Gökhan S. Hotamisligil1,*

1Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
2Present address: National Institutes of Health, NHLBI, 10 Center Drive, Building 10, 8N109, Bethesda, MD 20892, USA
3Present address: Second Department of Internal Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku 060-8543, Japan
*Correspondence: ghotamis@hsph.harvard.edu
http://dx.doi.org/10.1016/j.cmet.2013.04.012

SUMMARY

Proper control of hepatic glucose production is central to whole-body glucose homeostasis, and its disruption plays a major role in diabetes. Here, we demonstrate that although established as an intracellular lipid chaperone, aP2 is in fact actively secreted from adipocytes to control liver glucose metabolism. Secretion of aP2 from adipocytes is regulated by fasting- and lipolysis-related signals, and circulating aP2 levels are markedly elevated in mouse and human obesity. Recombinant aP2 stimulates glucose production and gluconeogenic activity in primary hepatocytes in vitro and in lean mice in vivo. In contrast, neutralization of secreted aP2 reduces glucose production and corrects the diabetic phenotype of obese mice. Hyperinsulinemic-euglycemic and pancreatic clamp studies upon aP2 administration or neutralization demonstrated actions of aP2 in liver. We conclude that aP2 is an adipokine linking adipocytes to hepatic glucose production and that neutralizing secreted aP2 may represent an effective therapeutic strategy against diabetes.

INTRODUCTION

Adipose tissue is the most effective site for energy and nutrient storage as well as for release, depending on the energy demands of the organism. This highly conserved function of adipose tissue ensures safe storage at times of plenty and is an integral part of survival during limited access to nutrients. In addition, adipose tissue is also an important endocrine organ responsible for systemic metabolic regulation (Rosen and Spiegelman, 2006). The metabolic effects of adipose tissue are mediated by a variety of hormones, inflammatory cytokines, adipokines, and lipokines, which play a critical role in systemic metabolic homeostasis, and alterations in the endocrine output of adipose tissue link obesity or lipodystrophy to an array of metabolic disorders (Hotamisligil, 2006; Waki and Tontonoz, 2007). Thus, in both physiological and pathological contexts, adipose tissue is a key organ in which nutrient and endogenous signaling molecules interact and integrate, ultimately resulting in systemic regulation or disruption of metabolic homeostasis.

While obesity-induced hormonal changes in adipose tissue are extensively studied, the endocrine function of this tissue during fasting and in regulation of glucose production is poorly understood. In times of nutrient deprivation, the body launches a complex hormonal response to maintain glucose supply to vital organs (Cahill, 2006; Lin and Accili, 2011; Unger and Cherrington, 2012). This response, among other adaptations, results in the breakdown of glycogen and lipid stores to generate substrates and energy, and stimulates glucose production from the liver (Cahill, 2006; Lin and Accili, 2011; Unger and Cherrington, 2012). A key mediator signaling some of these fasting functions, including glucose production, is the pancreatic hormone glucagon, produced by α cells of the islets of Langerhans, which counteracts the action of insulin (Cahill, 2006; Lin and Accili, 2011; Unger and Cherrington, 2012). Adipose tissue lipolysis contributes the majority of fatty acids in the serum, which are taken up and oxidized in muscle and activate glucose production in liver. Until now, however, no hormonal input emanating from this tissue has been identified that impacts hepatic glucose production and other changes in systemic glucose metabolism associated with fasting or related responses in the long term (Boden, 2003; Chu et al., 2002; Everett-Grueter et al., 2006; Lam et al., 2003).

Interestingly, it is established that hepatic glucose production is dysregulated in obesity and represents a key process leading to development of diabetes. There is an ongoing debate in the field as to whether this response is a consequence of insulin resistance or glucagon sensitivity in the liver, is secondary to an inability of insulin to suppress lipolysis effectively (Lin and Accili, 2011; Unger and Cherrington, 2012), or is due to other yet-unknown mechanisms. Whether it is expansion of adipose tissue, dysregulated lipolysis, or both that contributes to hepatic glucose output, the mechanism by which this process is signaled between adipose tissue and liver, and the hormonal mediator(s) carrying out this function, also remains unidentified.

In recent years, cytosolic adipose tissue fatty acid binding proteins (FABPs) have emerged as critical molecules integrating intracellular lipid signals under metabolic stress conditions (Furuhashi and Hotamisligil, 2008; Hertzel and Bernlohr, 2000). Adipocytes express one major and one minor isoform of FABP, called aP2 and mal1 (FABP4 and FABP5), respectively. Mice deficient in these lipid chaperones exhibit marked protection against a multitude of metabolic abnormalities associated with obesity (Furuhashi et al., 2007, 2008; Maeda et al., 2005;
Makowski et al., 2001). Previously, we demonstrated that FABP deficiency in adipose tissue results in the production of C16:1n7-palmitoleate, and it is through this mechanism that adipose lipid chaperones regulate liver lipogenesis and muscle glucose utilization (Cao et al., 2008). While a major phenotype of these animals also relates to hepatic production, neither we nor others have been able to identify the hormonal mechanism by which hepatic production is regulated by adipose tissue lipid chaperones. Since we have ruled out a role for leptin or adiponectin (ACDC), these observations indicate the presence of an additional signal that communicates between adipose tissue and liver to regulate glucose metabolism, including responses during lipolysis.

Here we demonstrate that aP2 is secreted from adipocytes in response to fasting and fasting-related signals and regulates hepatic glucose production. Hence, despite the established dogma linking its biology strictly to its cytosolic activities, aP2 carries out a critical metabolic function by acting as an adipokine in the adipo-hepatic axis, which could be an attractive target for therapeutic intervention in diabetes.

RESULTS

aP2 Is Secreted from Adipocytes In Vitro
Since its identification, aP2 has been considered a cytosolic protein. However, it was recently identified by a proteomics screen in the supernatant of differentiated 3T3-L1 adipocytes (data not shown) and has been detected in human serum (Xu et al., 2006). These intriguing observations prompted us to examine the possibility of regulated secretion of this protein from adipocytes. Examination of aP2 levels in conditioned medium and cell lysates from both genotypes. In contrast, other highly expressed cytosolic proteins were undetectable under the same conditions, supporting the possibility of active aP2 secretion from adipocytes (Figure 1A). However, as one of the most abundant cytosolic proteins in adipocytes, the presence of aP2 in conditioned medium could still have been due to nonspecific release resulting from cell death and/or lysis. To examine the nature of aP2’s exit from cells, we transfected cells with a FLAG-tagged green fluorescent protein (GFP) along with similarly tagged aP2 and AKT and carefully titrated the amounts of each plasmid to ensure that all proteins were expressed at similar levels inside cells. We then probed both conditioned medium and cell lysate with the anti-FLAG antibody to eliminate any variation that might be introduced by differing sensitivities among antibodies. In these experiments, aP2 was readily detectable in the conditioned medium, while GFP and AKT were undetectable under the same conditions (Figure 1B). These data indicated that aP2 is...
secreted and that its presence in conditioned medium was not
due to nonspecific cell lysis or death. We also expressed
FLAG-tagged aP2 in aP2−/− adipocytes under the control of
CMV promoter and examined its secretion under basal and stim-
ulated conditions (Figures 1C and 1D). In this setting, aP2 secre-
tion was detected in the conditioned media by western blot
analysis following immunoprecipitation with an anti-Flag anti-ody. To further understand the kinetics and mode of aP2 secre-
tion, we metabolically labeled cellular proteins in adipocytes and
performed pulse-chase analysis of secreted aP2 along with a
classically secreted adipocyte protein, adiponectin. In these
experiments, aP2 was detectable in conditioned medium at 1 hr
postchase and continued to increase during the 4 hr chase
period in a manner similar to adiponectin (Figure 1E). Interest-
ingly, while adiponectin secretion was blocked by brefeldin A
or monensin, neither of these agents exhibited any inhibitory
effect on aP2 secretion, indicating that aP2 is released from
adipocytes via a nonclassical secretory pathway (Figure 1E).
This finding is consistent with the fact that aP2 lacks a signal
peptide sequence.

aP2 Secretion Is Regulated by Nutritional Fluctuations and Lipolysis

To explore the potential metabolic function of secreted aP2, we
first examined aP2 levels in response to metabolic status
through nutrient fluctuations and investigated whether aP2 levels
change in the fasted and fed states. The circulating aP2 levels in
mice fasted for 24 hr were higher compared to levels at the fed
state (4 hr feeding following the fast) or during ad libitum feeding
(Figure 2A). Therefore, nutritional status can modulate serum
aP2 levels, without any change in the cytosolic pool of the protein
in adipose tissue (Figure 2A), which suggests that serum aP2
might be part of a systemic program that regulates energy
homeostasis. During nutrient deprivation, a primary function of
adipocyte tissue in energy homeostasis is to provide fatty acids
via lipolysis for other tissues. Since aP2 levels are increased
during fasting, we investigated whether aP2 secretion responds
to signals that are activated in this state in vivo.

We first administered β-adrenergic receptor agonists isopro-
teranol (pan-β) or CL 316243 (β3-specific) to mice and verified
that each compound activated lipolysis (see Figure S1A online).
Mice receiving either of the compounds exhibited a rapid
increase in plasma aP2 levels compared to vehicle-treated con-
trols (Figure 2B), indicating that aP2 secretion is affected by lipo-
lytic signals in vivo and that the elevated circulating aP2 in mice
during fasting is consistent with increased lipolytic activity in
adipose tissue. We also harvested and cultured adipose tissue
explants ex vivo, and examined aP2 secretion in response to for-
skolin (FSK) or isobutylmethylxanthine (IBMX) treatment to study
the impact of other fasting-related signals on aP2 secretion. Both
of these agents caused a very substantial increase in aP2 secre-
tion from adipose explants (Figure 2C), confirming that this
process is tightly linked to fasting signals and lipolysis ex vivo,
as it is in vivo.

Next we examined aP2 secretion in vitro in cultured adipogenic
cell lines and examined the impact of IBMX and
dibutyryl-cAMP (db-cAMP) treatment in pure populations of
adipocytes. Cultured WT adipocytes exposed to IBMX and
db-cAMP exhibited a robust increase in aP2 secretion (Figure
2D). Several other fasting-related signals, such as β agonists,
branched-chain amino acids, and glycerol, also increased aP2
secretion from cultured adipocytes (data not shown). Interest-
ingly, when cells were treated with insulin, both baseline secre-
tion and stimulated aP2 secretion were suppressed (Figure 2D).
In adipocytes treated with increasing doses of CL 316243 or
FSK, we also examined the presence of lactate dehydrogenase

Table 1. Nutritional Status and Lipolysis
Regulate aP2 Secretion

<table>
<thead>
<tr>
<th>Condition</th>
<th>aP2 Secretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasted</td>
<td>Increased</td>
</tr>
<tr>
<td>Fed</td>
<td>Basal levels</td>
</tr>
<tr>
<td>Ad libitum</td>
<td>Basal levels</td>
</tr>
</tbody>
</table>

Figure 2. Nutritional Status and Lipolysis Regulate aP2 Secretion

(A) Plasma aP2 in mice fasted for 24 hr, refed for 4 hr after a 24 hr fast, or fed ad libitum. Below the graphs are corresponding aP2 western blots in WAT lysates.

(B) Plasma aP2 levels in mice injected with saline (Control), CL 316243 (CL, 0.1 mg/kg), or isoproterenol (ISO, 1 mg/kg) to induce lipolysis. At least six male mice were used in each experiment.

(C) aP2 in conditioned medium (CM) or whole-cell lysates (WCL) of adipose tissue explants treated with forskolin (FSK, 20 μM) or isobuty/methylxanthine (IBMX, 1 mM). Below the graphs are corresponding aP2 western blots in CM and WCL.

(D) aP2 in CM or WCL of adipocytes treated with isobuty/methylxanthine and dibutryl cyclic adenosine monophosphate (IBMX/db-cAMP; I/C, 1 mM) and insulin (Ins, 100 ng/ml) or isobuty/methylxanthine (IBMX) treatment with FSK, db-cAMP, or IBMX. Below the graphs are corresponding aP2 western blots in CM and WCL blotted with an anti-aP2 antibody. β-tubulin is shown as a loading control. Data are presented as means ± SEM. *p < 0.05 in Student’s t test.
We measured circulating aP2 have been reported to be associated with obesity in humans (Tso et al., 2007; Xu et al., 2006). We measured circulating aP2 in a large set of samples with a range of body weight (n = 910 and male n = 904), as a function of body mass index (BMI).

In addition to mouse systems, we also examined regulation of aP2 secretion in human primary cultured adipocytes (Figures 2E and 2F). In cultured omental (Figure 2E) and subcutaneous (Figure 2F) adipocytes, treatment with FSK, IBMX, or db-cAMP increased aP2 secretion from adipocytes and also stimulated lipolysis (Figures S2A–S2D). Taken together, these results demonstrate that fasting-related signals and agents that stimulate lipolysis strongly induce aP2 secretion in both mouse and human adipocytes.

Regulation of aP2 Secretion In Vivo
Fasting- and lipolysis-related secretion of aP2 prompted us to examine circulating aP2 levels in physiological and pathological states in vivo in WT and FABP-deficient mouse models. In WT as well as mal1−/− (M−/−, FABP5−/−) mice, aP2 was present at levels ranging from 100 to 300 ng/ml in plasma (Figure 3A). There was no detectable signal in aP2−/− (A−/−) and aP2-mal1−/− (AM−/−) controls, validating the specificity of the assay (Figure 3A). Plasma aP2 in WT mice is 10- to 20-fold more abundant than leptin (around 12.5 ng/ml) but still significantly (100-fold) lower than adiponectin levels (5–10 ng/ml). To explore the regulation of circulating mal1 levels during fasting and feeding (Figure S3C).

Increased aP2 levels during obesity may be due to elevated aP2 expression, expanded fat mass, increased aP2 secretion, changes in clearance, or a combination of these alterations. Since it is known that obesity does not have a strong impact on overall adipose tissue aP2 expression (Tong et al., 2000), we attempted to determine whether increased volume of fat mass and/or dysregulation of secretion contributes to the increased circulating aP2 levels in obese mice. We collected fat explants from lean and obese (ob/ob) mice and examined aP2 release ex vivo. In this explant culture, aP2 secretion from an equal mass of adipose tissue from lean mice was still significantly higher than that from lean controls, indicating that obese mice have dysregulated aP2 secretion (Figures 3D and 3E). In contrast, adiponectin secretion was significantly reduced in obese mice (Figure S3B), and there was no nutritional regulation of circulating mal1 levels during fasting and feeding (Figure 3C).

(a) Plasma aP2 levels in WT, mal1−/− (M−/−), aP2−/− (A−/−), and aP2-mal1−/− (AM−/−) mice, determined by ELISA.
(b) Plasma aP2 levels of lean (WT regular diet, RD), or mice with diet (WT high-fat diet, HFD) or genetic obesity (ob/ob).
(c) Serum aP2 levels in human subjects, female (n = 910) and male (n = 904), as a function of body mass index (BMI).
(d) aP2 secretion from weight-matched adipose tissue explants of lean and obese mice. Adipose tissue explants were collected from WT mice maintained on regular diet or ob/ob mice, and were thoroughly washed with PBS. Fresh medium was added and incubated overnight and collected for western blot analysis using anti-aP2 or adiponectin (ACDC) antibodies.
(e) Graphed is quantitative measurement of the relative secretion of aP2 and adiponectin from adipose tissue explants from WT mice maintained on regular diet or ob/ob mice.
(f) Plasma aP2 in mice that have undergone bone marrow transplantation. Bone marrow transplantation was performed between WT and aP2-mal1−/− (AM−/−) mice (as donors and recipients), and plasma aP2 levels were determined by aP2 ELISA in the resulting four groups of chimeras. Statistical analysis was performed by Student’s t test. Data are presented as means ± SEM. *p < 0.05.
reduced hepatic glucose production is a major feature of genetic obesity despite ample nutrient and energy availability in obesity. Since aP2 inappropriately signals an aspect of fasting metabolism, levels are constitutively elevated in the obese, it is possible that secreted aP2 might have related metabolic functions. Fasting is coupled to a switch from hepatic glycogenolysis to gluconeogenesis, demanding a higher drive to sustain hepatic glucose production, and is accompanied by decreased glucose utilization (Cahill, 2006; Unger and Cherrington, 2012). Dysregulation of these processes is critical in the development of hyperglycemia and frank diabetes (Lam et al., 2003). As blood aP2 concentrations were experimentally elevated in otherwise metabolically normal mice and examined whole-body glucose fluxes using clamp studies (Figures S4C and S4D). We produced and purified recombinant aP2 protein and first infused aP2 into conscious WT mice to examine the effects of circulating aP2 on glucose metabolism with a hyperinsulinemic-euglycemic clamp study (Figure S4E). In this setting, aP2 infusion established a high steady-state plasma aP2 concentration (>300 ng/ml). To address this possibility, we first tested the effects of recombinant aP2 treatment on glucose production in primary isolated hepatocytes. In these cells isolated from overnight fasted animals, treatment with glucagon (3 μM), the prototype hormone regulating liver glucose production, resulted in increased glucose production (Figure 4A). Interestingly, a similar pattern of an effect was also observed upon aP2 treatment where glucose production was increased by 30% (Figure 4A). In these hepatocytes, treatment with aP2 also resulted in increased expression of two gluconeogenic enzymes, phosphoenolpyruvate carboxykinase 1 (Pck1) (Figure 4B) and glucose-6-phosphatase (G6pc) (Figure S4A). Treatment with recombinant aP2 also significantly (84%) increased the enzymatic activity of Pck1 in primary hepatocytes (Figure 4C). A mutant aP2 with alterations in its lipid-binding domain (Erbay et al., 2009) lacked the ability to induce Pck1 expression in hepatocytes (Figure 4D). There was also no change in gluconeogenic gene expression in primary hepatocytes upon treatment with recombinant mal1 (Figure S4B). Hence, there was selectivity in the actions of aP2 on hepatic gluconeogenic targets.

Circulating aP2 Regulates Liver Glucose Production

The tight coupling of aP2 secretion to fasting and lipolytic signals suggests that secreted aP2 might have related metabolic functions. Fasting is coupled to a switch from hepatic glycogenolysis to gluconeogenesis, demanding a higher drive to sustain hepatic glucose production, and is accompanied by decreased glucose utilization (Cahill, 2006; Unger and Cherrington, 2012). Dysregulation of these processes is critical in the development of hyperglycemia and frank diabetes (Lam et al., 2003). As blood aP2 levels are constitutively elevated in the obese, it is possible that aP2 inappropriately signals an aspect of fasting metabolism despite ample nutrient and energy availability in obesity. Since reduced hepatic glucose production is a major feature of genetic FABP deficiency (Cao et al., 2006), our observations raise the possibility that aP2 may be an adipokine that regulates systemic glucose metabolism in vivo.

To address this possibility, we first tested the effects of recombinant aP2 treatment on glucose production in primary isolated hepatocytes. In these cells isolated from overnight fasted animals, treatment with glucagon (3 μM), the prototype hormone regulating liver glucose production, resulted in increased glucose production (Figure 4A). Interestingly, a similar pattern of an effect was also observed upon aP2 treatment where glucose production was increased by 30% (Figure 4A). In these hepatocytes, treatment with aP2 also resulted in increased expression of two gluconeogenic enzymes, phosphoenolpyruvate carboxykinase 1 (Pck1) (Figure 4B) and glucose-6-phosphatase (G6pc) (Figure S4A). Treatment with recombinant aP2 also significantly (84%) increased the enzymatic activity of Pck1 in primary hepatocytes (Figure 4C). A mutant aP2 with alterations in its lipid-binding domain (Erbay et al., 2009) lacked the ability to induce Pck1 expression in hepatocytes (Figure 4D). There was also no change in gluconeogenic gene expression in primary hepatocytes upon treatment with recombinant mal1 (Figure S4B). Hence, there was selectivity in the actions of aP2 on hepatic gluconeogenic targets.

If secreted aP2 also functions, at least in part, to regulate hepatic glucose production in vivo, there may be important physiological and pathophysiological implications of such activity and its aberrant regulation in type 2 diabetes. Hence, we experimentally elevated serum aP2 in otherwise metabolically normal mice and examined whole-body glucose fluxes using clamp studies (Figures S4C and S4D). We produced and purified recombinant protein and first infused aP2 into conscious WT mice to examine the effects of circulating aP2 on glucose metabolism with a hyperinsulinemic-euglycemic clamp study (Figure S4E). In this setting, aP2 infusion established a high steady-state plasma aP2 concentration (>300 ng/ml)
comparable to levels seen in obese mice (Figure S4D). During the clamp study, mice receiving aP2 displayed increased basal and clamp hepatic glucose production and required significantly reduced glucose infusion (Figures 4E–4G). There was no significant difference in whole-body glucose disposal rates under a similar extent of hyperinsulinemia (Figures S4F and S4G). In aP2-treated mice, there were significant increases in the expression of the gluconeogenic enzymes Pck1 and G6pc in liver (Figure 4H).

We next performed pancreatic clamp studies (Figures S6A–S6C) to address the direct ability of aP2 to target glucose metabolism in vivo. For this, we used aP2-deficient genetic background mice and reconstituted circulating aP2 by infusing recombinant protein. We were able to achieve blood aP2 levels comparable to those in obese animals (Figure 5A) and proceeded with pancreatic clamp experiments. Infusion of aP2 did not alter plasma levels of mal1, adiponectin, or glucagon (Figures 5B–5D). In this setting we also showed increased hepatic glucose production (Figure 5E, Figure S6D) and decreased glucose infusion rates upon aP2 administration (Figure 5F), but no significant effect on glucose disposal (Figure 5G). In line with previous cellular and in vivo experiments, we also observed increased expression of gluconeogenic enzymes, Pck1 and G6pc, in the liver samples (Figures S6E and S6F), although the former did not reach significance (p = 0.06). Pck1 activity in the liver tissue was significantly (85%) increased in aP2-treated animals (Figure 5H). There were no differences in hepatic lipid and glycogen content, and lipogenic (Fasn and Scd1) and inflammatory (Il1β, Tnfα, and Il6) gene expression upon aP2 treatment (Figures S7A–S7H). Hence, these experiments demonstrate that aP2 can act on liver to stimulate glucose in WT mice as well as upon reconstitution in aP2-deficient animals but do not rule out potential aP2 action on peripheral sites.
Serum aP2 Critically Regulates Hepatic Glucose Metabolism in Mice

Stimulation of aP2 secretion upon lipolysis and the marked increase in its serum levels in obesity raise the possibility that circulating aP2 may be a candidate hormone linking adipose tissue to hepatic glucose production and leading to its dysregulation in obesity. To investigate this hypothesis, we developed a neutralizing antibody to interfere with circulating aP2. We verified that this antibody specifically detected aP2 with high sensitivity and specificity (Figure S5E) and then injected into mice with dietary obesity for 2 weeks and examined metabolic outcomes. There was a reduction in plasma aP2 levels in antibody-treated mice (Figure 6A), which occurred without any alteration in aP2 tissue to hepatic glucose production and leading to its dysregulation in obesity. To investigate this hypothesis, we developed a neutralizing antibody to interfere with circulating aP2. We verified that this antibody specifically detected aP2 with high sensitivity and specificity (Figure S5E) and then injected into mice with dietary obesity for 2 weeks and examined metabolic outcomes. There was a reduction in plasma aP2 levels in antibody-treated mice (Figure 6A), which occurred without any alteration in aP2 protein levels in the adipose tissue (Figure 6B). We also verified that this reduction in blood aP2 was not due to interference with our assay system, as short-term administration of the antibody did not alter aP2 levels in lean mice, and measurements in antibody-spiked plasma samples did not interfere with the assay (data not shown). Antibody administration did not alter the body weight (Figure 6C) but caused a significant decrease in blood glucose levels within 2 weeks of treatment compared to controls treated with a preimmune IgG (Figure 6D). No difference was detected in blood-free fatty acid levels between groups (Figure 6E). In a glucose tolerance test, mice receiving the aP2 antibody exhibited significantly improved glucose disposal curves compared to control animals (Figure 6F). The changes in glucose disposal curves evaluated by the area under the curve also exhibited significant differences (Figure 6G). Taken together, these results demonstrated significantly improved whole-body glucose metabolism upon treatment with the anti-aP2 antibody.

We then asked whether the effects of aP2 neutralization on glucose metabolism were also related to its effects on hepatic glucose metabolism. Therefore, we examined total-body glucose fluxes and tissue-specific effects by performing hyperinsulinemic-euglycemic clamp studies in mice treated with aP2 antibody. Neutralization of aP2 in obese mice resulted in significantly decreased basal and clamp hepatic glucose production (Figures 7A and 7B), indicating that the liver is the primary target of circulating aP2 in regulating glucose metabolism. During the clamp studies, obese mice injected with the antibody required significantly increased glucose infusion rates (Figure 7C) but exhibited no changes in their rate of overall glucose disposal compared to controls (Figure 7D). These results indicated that the elevated glucose infusion rate in these animals was driven mainly by decreased hepatic glucose production, which is also supported by decreased gluconeogenic gene expression (Pck1 and G6pc) in the liver tissues of these animals (Figure 7E). These data are in line with what has been observed in whole-body FABP-deficient mice with genetic or dietary obesity (Cao et al., 2006) and consistent with the effects obtained with soluble aP2 in this study. Collectively, the effects of aP2 on hepatic glucose metabolism appear to be primarily mediated by the secreted form of this protein (Figure 7F).

DISCUSSION

The present study provides evidence that aP2 is an adipokine that is regulated by nutritional status and obesity. In mouse and human adipocytes, aP2 secretion is activated by fasting-related signals, including lipolytic agents. In mice, serum aP2 is entirely derived from adipocytes, with a marked increase in the secretion of this protein upon fasting and genetic or dietary obesity models. Importantly, serum aP2 levels are also strongly and positively correlated with obesity in humans. Depletion of serum aP2 in obese mice suppresses the elevated hepatic glucose production, while the converse—increasing serum aP2 in lean mice—leads to enhanced hepatic glucose production. These results indicate that secreted aP2 may be an important component of the adipo-hepatic communication system regulating liver glucose production (Figure 7F).
Serum-free fatty acids represent a key energy source during fasting. It is also recognized that elevated lipolysis and increased serum fatty acid levels are linked to the dysregulation of systemic glucose homeostasis and are one of the critical underlying causes of obesity-induced metabolic pathologies (Boden, 2003). Excess fatty acids cause insulin resistance in muscle and liver by reducing glucose utilization and attenuating insulin-mediated suppression of glucose production, respectively. Utilizing well-controlled hormonal conditions and clamp studies, fatty acids have also been shown to increase liver glucose production (Chu et al., 2002). This effect has been attributed to the activation of gluconeogenesis pathways by fatty acids (Boden, 2003; Lam et al., 2003), but an effect on insulin action has not been ruled out. Furthermore, numerous mouse models and conditions have uncoupled liver glucose production from increased serum fatty acids (Everett-Grueter et al., 2006; Féry et al., 1996; Savage et al., 2007), both in health and in the presence of diabetes. These observations indicate the potential involvement of an unknown factor(s) required to stimulate hepatic gluconeogenesis, especially during fasting conditions or obesity, where there is insulin resistance and hence poor control of lipolysis, somewhat resembling the fasting condition in the presence of plenty (Fu et al., 2012). Our study identifies aP2 as a candidate adipocyte hormone mediating this important endocrine function.

The secretion of aP2 from adipocytes occurs at baseline conditions and responds to several signals associated with fasting condition. It would be further revealing to explore the mechanisms by which these signals stimulate aP2 secretion from adipocytes. Since aP2 lacks a signal peptide and its secretion from adipocytes is resistant to blocking of the classic secretory pathway, it is likely that its secretion in these cells occurs through a nonclassical, alternative mechanism. This may represent a novel mechanism employed by adipocytes to support their secretory output and would also be an important area to explore in the future and may offer further insights into the biology of aP2 as an adipokine. Additionally in obesity, adipose tissue exhibits signs of inflammation and cell death, which may contribute to the presence of high levels of aP2 in circulation. Regardless, the apparent role of aP2 as a required serum component for dysregulated liver glucose production argues that obesity-induced hyper-aP2-emia might contribute to the elevated hepatic glucose production, which is the hallmark of hyperglycemia, in subjects with type 2 diabetes (Olefsky and Nolan, 1995). This would be consistent with the fact that during the transition from insulin resistance to hyperglycemia, fatty acid concentrations...
do not change significantly and hence may not explain, alone, the alterations in liver glucose metabolism. In fact, emerging data have strongly linked serum aP2 levels with metabolic disease risk in humans (Cabré et al., 2012; Furuhashi et al., 2011; Kralsich and Fasshauer, 2013; Peeters et al., 2011; Xu et al., 2006; Yoo et al., 2011) and even suggested that circulating aP2’s relation to metabolic risk is significantly stronger than fasting free fatty acids (Karakas et al., 2009).

In our study, we detected direct actions of aP2 in liver cells to regulate glucose production. However, in vitro systems present limitations to faithfully study glucose production. Therefore, it is still possible that regulation of hepatic glucose production by aP2 may also involve indirect mechanisms on other hormonal pathways such as glucagon on liver in vivo. Understanding of the potential cell-surface signaling mechanisms and whether aP2 engages similar downstream mediators such as cAMP production and PKA activation, and transcription factors such as PGC1α and HNF4 that result in the regulation of gluconeogenic targets, should shed light into these possibilities (Lin and Accili, 2011). We have produced strong evidence for a direct action of aP2 on liver using pancreatic clamp studies in aP2-deficient mice reconstituted with recombinant aP2. However, we cannot rule out the involvement of other signals and hormones in collaboration with aP2 to regulate this or other aspects of glucose metabolism systemically to contribute to development of diabetes. Future studies should address this interesting possibility. Regardless of our findings, support an exciting possibility that neutralizing serum aP2 may overcome the hurdles in exploiting aP2 as a therapeutic target by small molecules and represent an efficient approach to treating diabetes and possibly other metabolic diseases.

EXPERIMENTAL PROCEDURES

Animals

Mice with homozygous null mutations in aP2 and mal1 were backcrossed more than 12 generations into a C57BL/6j genetic background as previously described (Maeda et al., 2005). The genetic backgrounds of mice are also verified by congenic genotyping of 288 loci markers for the C57Bl/6j background using an ABI3130 genetic analyzer. Mice were maintained on regular chow diet (RD, PicoLab 5058 Lab Diet) or placed on HFD (Research Diets, Inc., D12492) at 4 weeks of age for 20 weeks to induce dietary obesity. Leptin-deficient (ob/ob) mice were purchased from The Jackson Laboratory. Animals used were 24–28 weeks of age for lean and dietary models and 16 weeks of age for the ob/ob model, unless otherwise stated in the text. Regardless of the model, all mice used in experiments were males and maintained on a 12 hr light and dark cycle. In each animal experiment at least 10 mice were used, unless otherwise stated in the text. Glucose tolerance tests, hyperinsulinemic-euglycemic clamp, and pancreatic clamp experiments were performed as described previously (Furuhashi et al., 2007; Maeda et al., 2005; Rossetti et al., 1997). The Harvard Medical Area Standing Committee on Animals approved all studies.

Bone Marrow Transplantation

Six-week-old recipient mice were irradiated with two 5 Gy doses (total 10 Gy) from a cesium source separated by a 4 hr interval in order to minimize radiation toxicity. Bone marrow was collected by flushing the femurs and tibias from sex-matched donor mice (6–8 weeks of age) with GIBCO RPMI 1640 medium (Invitrogen), as described (Furuhashi et al., 2008). Four hours after the second irradiation, 5 × 10^6 bone marrow cells in 0.2 ml medium were injected intravenously. Starting 1 week before and 4 weeks following bone marrow transplantation, 100 mg/l neomycin and 10 mg/l polymyxin B sulfate were added to the acidified drinking water.

Metabolic Labeling and Pulse-Chase Experiments

Cultured adipocytes were plated onto 6-well plates and incubated for 16 hr with DMEM containing 0.2% BSA. The cells were washed twice with PBS and incubated with methionine- and cysteine-free DMEM without serum for 1 hr to deplete the intracellular pools. Thereafter, the cells were incubated with 1 ml of methionine- and cysteine-free DMEM without serum containing 100 μCi/ml of L-[35S]-methionine and L-[35S]-cysteine (GE Healthcare) for 4 hr. Then the labeling medium was replaced with 1.2 ml of DMEM (serum-free) with vehicle, brefeldin A (10 μg/ml) or monensin (5 μM), and chased up to 4 hr. To prepare cell lysates, the cells were washed with PBS twice and resuspended in buffer A (10 mM Tris-HCl [pH 7.5], 150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40, and proteinase inhibitor cocktail). After centrifugation to remove undissolved cellular debris, the cell lysates were subjected to immunoprecipitation. A total of 500 μl of cell lysate was mixed with 500 μl of buffer A without EDTA and NP-40, precleared by protein G Sepharose (GE Healthcare) for 30 min, and immunoprecipitated with either adiponectin antisum (kindly provided by Dr. Philipp Scherer, UT Southwestern Medical Center) or aP2 antibody overnight followed by incubation with 40 μl of protein G Sepharose for 2 hr. Forty five microliters of 10× buffer B (1× buffer B, 10 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1% NP-40) was added to the aliquots of the medium from metabolically labeled cells (250 μl) and DMEM (200 μl), and immunoprecipitation was performed as described above. Immune complexes were washed three times with buffer B and subjected to SDS-PAGE followed by autoradiography.

Primary Culture of Mouse Hepatocytes and Glucose Production Assays

Hepatocytes were isolated from overnight fasted mice by the collagenase perfusion method, as described previously (Sekiya et al., 2007). Cells were resuspended in Williams-E medium containing 5% FBS and seeded on collagen-coated dishes at 4.5 × 10^5 cells/cm². After 4 hr, cells were washed and cultured in fresh medium. For glucose production, cells were serum starved with 0.2% BSA overnight. Thereafter, the medium was replaced with phenol- and glucose-free DMEM, supplemented with 2 mM propionic acid, and the cells were incubated for 2 hr with vehicle, recombinant aP2 (10 μg/ml), or glucagon (3 μM). The glucose concentration was determined using Amplicon Red Glucose/Glucose Oxidase Assay Kit (Invitrogen). The cells were lysed with 0.1% NaOH overnight, and the protein concentration was determined to normalize the values for glucose production.

Production, Purification, and Administration of Recombinant aP2 and aP2 Antibody

Recombinant aP2 or control Gus protein with 6× His Tag was produced in E. coli and purified with B-PER 6×His Spin Purification Kit (Pierce Biotechnology, Inc) followed by endotoxin removal with a commercial system (Lonza Inc.). One hundred micrograms of control or aP2 protein was intraperitoneally injected into WT mice maintained on regular chow diet twice a day for 2 weeks. The rabbit polyclonal antibody against mouse aP2 was produced using recombinant full-length aP2 protein, and the antibody was purified from the serum of the final bleed using the NAB Spin system (Pierce Biotechnology, Inc). Premune serum was purified similarly and used as control. Purified antibody was diluted in saline to 1 μg/ml and injected at a dose of 5 μg/kg into mice on HFD for 14 days. The aP2 protein used in hyperinsulinemic and pancreatic clamp studies was produced and purified by the UCB pharmaceutical company.

Hyperinsulinemic-Euglycemic or Pancreatic Clamp Studies with aP2 Infusion

Four days prior to experiments, mice were anesthetized, and the right jugular vein was catheterized with a PE-10 polyethylene tube (inside and outside diameters, 0.28 mm and 0.61 mm, respectively; Becton Dickinson) filled with heparin solution (100 USP U/ml). The distal end of the catheter was tunneled through the abdominal wall and exteriorized in the intrascapular area, heat sealed, and then placed in a pocket under the skin until the day of the experiment, when it was re-exteriorized. Hyperinsulinemic-euglycemic and pancreatic clamps were performed by modification of reported procedures (Furuhashi et al., 2008; Rossetti et al., 1997). Steady-state tracer analysis was used for calculations, and glucose-specific activity was verified for steady state. Prior to pancreatic clamp experiments, we validated the protocol and determined...
that glucagon levels were in the physiological range (77 pg/ml) during the clamp period.

Data Quantitation and Statistical Analysis

The western blot quantitations were made using ImageJ, a Java-based image processing program developed at the National Institutes of Health that gives pixel values to the corresponding image, thus enabling presentation of the data sets with statistics. The images generated by BioRad VersaDoc system were analyzed using ImageJ. The background noise signal was subtracted and the values obtained were corrected to the cellular aP2 in all the quantitations. Data are presented as mean ± SEM. Statistical significance was determined by Student’s t-test; *p < 0.05, **p < 0.01.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, Supplemental Experimental Procedures, and Supplemental References and can be found with this article at http://dx.doi.org/10.1016/j.cmet.2013.04.012.

ACKNOWLEDGMENTS

This work was supported in part by a National Institutes of Health (NIH) grant DK064360 (to G.S.H.). H.C. was supported by fellowships from the NIH Roadmap (DK71507-04) and the American Diabetes Association. M.E.E. was supported by the Roadmap Grant R90 DK071507 from NIH. M.S. was supported by a fellowship from the Manpei Suzuki Diabetes Foundation. M.F. was supported by fellowships from the Japan Society for the Promotion of Science and the American Diabetes Association. We thank Michael Alcala for technical help, Eric Rimm for providing human samples, Fahri Saatcioglu for scientific insights and discussion, Megan Washack for editorial assistance, and Ana Paula Arruda for the graphical abstract. The technology described in this manuscript is licensed to the biopharmaceutical company UCB, Union Chimique Belge.

Received: January 15, 2013
Revised: March 19, 2013
Accepted: April 17, 2013
Published: May 7, 2013

REFERENCES

Secreted aP2 Regulates Liver Glucose Metabolism

